Nuprl Lemma : fpf-join-wf
∀[A:Type]. ∀[B,C,D:A ⟶ Type]. ∀[f:a:A fp-> B[a]]. ∀[g:a:A fp-> C[a]]. ∀[eq:EqDecider(A)].
(f ⊕ g ∈ a:A fp-> D[a]) supposing
((∀a:A. ((↑a ∈ dom(g))
⇒ (C[a] ⊆r D[a]))) and
(∀a:A. ((↑a ∈ dom(f))
⇒ (B[a] ⊆r D[a]))))
Proof
Definitions occuring in Statement :
fpf-join: f ⊕ g
,
fpf-dom: x ∈ dom(f)
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
assert: ↑b
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
fpf: a:A fp-> B[a]
,
fpf-join: f ⊕ g
,
pi1: fst(t)
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
top: Top
,
fpf-cap: f(x)?z
,
fpf-dom: x ∈ dom(f)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
rev_implies: P
⇐ Q
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
not: ¬A
,
so_lambda: λ2x.t[x]
Latex:
\mforall{}[A:Type]. \mforall{}[B,C,D:A {}\mrightarrow{} Type]. \mforall{}[f:a:A fp-> B[a]]. \mforall{}[g:a:A fp-> C[a]]. \mforall{}[eq:EqDecider(A)].
(f \moplus{} g \mmember{} a:A fp-> D[a]) supposing
((\mforall{}a:A. ((\muparrow{}a \mmember{} dom(g)) {}\mRightarrow{} (C[a] \msubseteq{}r D[a]))) and
(\mforall{}a:A. ((\muparrow{}a \mmember{} dom(f)) {}\mRightarrow{} (B[a] \msubseteq{}r D[a]))))
Date html generated:
2016_05_16-AM-11_09_34
Last ObjectModification:
2015_12_29-AM-09_28_29
Theory : event-ordering
Home
Index