Nuprl Lemma : fpf-rename-ap2
∀[A,C:Type]. ∀[B:A ⟶ Type]. ∀[eqa:EqDecider(A)]. ∀[eqc,eqc':EqDecider(C)]. ∀[r:A ⟶ C]. ∀[f:a:A fp-> B[a]]. ∀[a:A].
(rename(r;f)(r a) = f(a) ∈ B[a]) supposing ((↑a ∈ dom(f)) and Inj(A;C;r))
Proof
Definitions occuring in Statement :
fpf-rename: rename(r;f)
,
fpf-ap: f(x)
,
fpf-dom: x ∈ dom(f)
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
inject: Inj(A;B;f)
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
fpf-ap: f(x)
,
fpf-rename: rename(r;f)
,
fpf: a:A fp-> B[a]
,
pi2: snd(t)
,
pi1: fst(t)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
so_lambda: λ2x.t[x]
,
deq: EqDecider(T)
,
so_apply: x[s]
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
uimplies: b supposing a
,
top: Top
,
prop: ℙ
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
cand: A c∧ B
,
eqof: eqof(d)
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
fpf-dom: x ∈ dom(f)
,
iff: P
⇐⇒ Q
,
guard: {T}
,
inject: Inj(A;B;f)
,
rev_implies: P
⇐ Q
Latex:
\mforall{}[A,C:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[eqa:EqDecider(A)]. \mforall{}[eqc,eqc':EqDecider(C)]. \mforall{}[r:A {}\mrightarrow{} C].
\mforall{}[f:a:A fp-> B[a]]. \mforall{}[a:A].
(rename(r;f)(r a) = f(a)) supposing ((\muparrow{}a \mmember{} dom(f)) and Inj(A;C;r))
Date html generated:
2016_05_16-AM-11_26_03
Last ObjectModification:
2015_12_29-AM-09_22_44
Theory : event-ordering
Home
Index