Nuprl Lemma : fpf-union-compatible_symmetry
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[C:Type].
∀eq:EqDecider(A). ∀f,g:x:A fp-> B[x] List. ∀R:(C List) ⟶ C ⟶ 𝔹.
(fpf-union-compatible(A;C;x.B[x];eq;R;f;g)
⇒ fpf-union-compatible(A;C;x.B[x];eq;R;g;f))
supposing ∀a:A. (B[a] ⊆r C)
Proof
Definitions occuring in Statement :
fpf-union-compatible: fpf-union-compatible(A;C;x.B[x];eq;R;f;g)
,
fpf: a:A fp-> B[a]
,
list: T List
,
deq: EqDecider(T)
,
bool: 𝔹
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
uimplies: b supposing a
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
implies: P
⇒ Q
,
fpf-union-compatible: fpf-union-compatible(A;C;x.B[x];eq;R;f;g)
,
or: P ∨ Q
,
and: P ∧ Q
,
guard: {T}
,
cand: A c∧ B
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
,
top: Top
Latex:
\mforall{}[A:Type]. \mforall{}[B:A {}\mrightarrow{} Type]. \mforall{}[C:Type].
\mforall{}eq:EqDecider(A). \mforall{}f,g:x:A fp-> B[x] List. \mforall{}R:(C List) {}\mrightarrow{} C {}\mrightarrow{} \mBbbB{}.
(fpf-union-compatible(A;C;x.B[x];eq;R;f;g) {}\mRightarrow{} fpf-union-compatible(A;C;x.B[x];eq;R;g;f))
supposing \mforall{}a:A. (B[a] \msubseteq{}r C)
Date html generated:
2016_05_16-AM-11_05_35
Last ObjectModification:
2015_12_29-AM-09_14_09
Theory : event-ordering
Home
Index