Nuprl Lemma : global-order-pairwise-compat-squash-invariant
∀[Info:Type]. ∀[P:Id ⟶ Info List+ ⟶ ℙ]. ∀[R:Id ⟶ Id ⟶ Info List+ ⟶ Info List+ ⟶ ℙ].
∀LL:(Id × Info) List List
((∀L1,L2∈LL. L1 || L2)
⇒ (∀L∈LL.squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))
⇒ (∃G:(Id × Info) List
((squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(G))
∧ (∀L∈LL.∃f:E ⟶ E. es-local-embedding(Info;global-eo(L);global-eo(G);f)))))
Proof
Definitions occuring in Statement :
global-order-compat: L1 || L2
,
global-eo: global-eo(L)
,
squash-causal-invariant: squash-causal-invariant(i,L.P[i; L];a,b,L1,L2.R[a; b; L1; L2])
,
es-local-embedding: es-local-embedding(Info;eo1;eo2;f)
,
es-E: E
,
Id: Id
,
pairwise: (∀x,y∈L. P[x; y])
,
l_all: (∀x∈L.P[x])
,
listp: A List+
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2;s3;s4]
,
so_apply: x[s1;s2]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
product: x:A × B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
cand: A c∧ B
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
list: T List
,
squash-causal-invariant: squash-causal-invariant(i,L.P[i; L];a,b,L1,L2.R[a; b; L1; L2])
,
top: Top
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
squash: ↓T
,
global-order-compat: L1 || L2
,
compat: l1 || l2
,
or: P ∨ Q
,
pi1: fst(t)
,
iff: P
⇐⇒ Q
,
l_all: (∀x∈L.P[x])
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
less_than: a < b
Latex:
\mforall{}[Info:Type]. \mforall{}[P:Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}]. \mforall{}[R:Id {}\mrightarrow{} Id {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} Info List\msupplus{} {}\mrightarrow{} \mBbbP{}].
\mforall{}LL:(Id \mtimes{} Info) List List
((\mforall{}L1,L2\mmember{}LL. L1 || L2)
{}\mRightarrow{} (\mforall{}L\mmember{}LL.squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(L))
{}\mRightarrow{} (\mexists{}G:(Id \mtimes{} Info) List
((squash-causal-invariant(i,L.P[i;L];a,b,L1,L2.R[a;b;L1;L2]) global-eo(G))
\mwedge{} (\mforall{}L\mmember{}LL.\mexists{}f:E {}\mrightarrow{} E. es-local-embedding(Info;global-eo(L);global-eo(G);f)))))
Date html generated:
2016_05_17-AM-08_39_01
Last ObjectModification:
2016_01_17-PM-02_31_56
Theory : event-ordering
Home
Index