Nuprl Lemma : information-flow-relation_wf
∀[Info,T:Type]. ∀[S:Id List]. ∀[F:information-flow(T;S)]. ∀[es:EO+(Info)]. ∀[X:EClass(T)].
∀[i:{i:Id| (i ∈ S)} ]. ∀[e:E(X)]. (information-flow-relation(es;X;F;e;i) ∈ ℙ) supposing es-interface-locs-list(es;X;S\000C)
Proof
Definitions occuring in Statement :
information-flow-relation: information-flow-relation(es;X;F;e;i)
,
es-interface-locs-list: es-interface-locs-list(es;X;S)
,
es-E-interface: E(X)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
information-flow: information-flow(T;S)
,
Id: Id
,
l_member: (x ∈ l)
,
list: T List
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
set: {x:A| B[x]}
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
information-flow-relation: information-flow-relation(es;X;F;e;i)
,
subtype_rel: A ⊆r B
,
es-E-interface: E(X)
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
information-flow: information-flow(T;S)
,
top: Top
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
guard: {T}
,
es-interface-locs-list: es-interface-locs-list(es;X;S)
Latex:
\mforall{}[Info,T:Type]. \mforall{}[S:Id List]. \mforall{}[F:information-flow(T;S)]. \mforall{}[es:EO+(Info)]. \mforall{}[X:EClass(T)].
\mforall{}[i:\{i:Id| (i \mmember{} S)\} ]. \mforall{}[e:E(X)]. (information-flow-relation(es;X;F;e;i) \mmember{} \mBbbP{})
supposing es-interface-locs-list(es;X;S)
Date html generated:
2016_05_16-PM-11_13_38
Last ObjectModification:
2015_12_29-AM-10_31_34
Theory : event-ordering
Home
Index