Nuprl Lemma : interface-union-val
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)]. ∀[e:E].
X+Y(e) = if e ∈b X then inl X(e) else inr Y(e) fi ∈ (A + B) supposing ↑e ∈b X+Y
Proof
Definitions occuring in Statement :
es-interface-union: X+Y
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
inr: inr x
,
inl: inl x
,
union: left + right
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
eclass: EClass(A[eo; e])
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
es-interface-union: X+Y
,
eclass-compose2: eclass-compose2(f;X;Y)
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
nat: ℕ
,
ifthenelse: if b then t else f fi
,
top: Top
,
eq_int: (i =z j)
,
assert: ↑b
,
cand: A c∧ B
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
not: ¬A
,
prop: ℙ
,
bfalse: ff
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
nequal: a ≠ b ∈ T
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[A,B:Type]. \mforall{}[X:EClass(A)]. \mforall{}[Y:EClass(B)]. \mforall{}[e:E].
X+Y(e) = if e \mmember{}\msubb{} X then inl X(e) else inr Y(e) fi supposing \muparrow{}e \mmember{}\msubb{} X+Y
Date html generated:
2016_05_16-PM-10_36_17
Last ObjectModification:
2016_01_17-PM-07_21_28
Theory : event-ordering
Home
Index