Nuprl Lemma : is-prior-class-when
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)]. ∀[d:Top]. ∀[e:E]. (e ∈b (X'?d) when Y ~ e ∈b Y)
Proof
Definitions occuring in Statement :
es-prior-class-when: (X'?d) when Y
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-E: E
,
uall: ∀[x:A]. B[x]
,
top: Top
,
universe: Type
,
sqequal: s ~ t
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
es-prior-class-when: (X'?d) when Y
,
in-eclass: e ∈b X
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
top: Top
,
eq_int: (i =z j)
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X,Y:EClass(Top)]. \mforall{}[d:Top]. \mforall{}[e:E]. (e \mmember{}\msubb{} (X'?d) when Y \msim{} e \mmember{}\msubb{} Y)
Date html generated:
2016_05_17-AM-07_18_48
Last ObjectModification:
2015_12_28-PM-11_59_20
Theory : event-ordering
Home
Index