Nuprl Lemma : iterate-null-process
∀[n:Top]. ∀[inputs:Top List]. (null-process(n)*(inputs) ~ null-process(n))
Proof
Definitions occuring in Statement :
iterate-process: P*(inputs)
,
null-process: null-process(n)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
top: Top
,
sqequal: s ~ t
Definitions unfolded in proof :
null-process: null-process(n)
,
iterate-process: P*(inputs)
,
rec-process: RecProcess(s0;s,m.next[s; m])
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
or: P ∨ Q
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
cons: [a / b]
,
colength: colength(L)
,
guard: {T}
,
decidable: Dec(P)
,
nil: []
,
it: ⋅
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
pi1: fst(t)
Latex:
\mforall{}[n:Top]. \mforall{}[inputs:Top List]. (null-process(n)*(inputs) \msim{} null-process(n))
Date html generated:
2016_05_16-AM-11_44_23
Last ObjectModification:
2016_01_17-PM-03_49_37
Theory : event-ordering
Home
Index