Nuprl Lemma : iterated_classrel_mem
∀[Info,A,S:Type]. ∀[init:Id ⟶ bag(S)]. ∀[f:A ⟶ S ⟶ S]. ∀[X:EClass(A)].
∀es:EO+(Info). ∀R:A ⟶ S ⟶ S ⟶ ℙ. ∀e1,e2:E. ∀v1,v2:S. ∀a:A.
(single-valued-classrel(es;X;A)
⇒ single-valued-bag(init loc(e1);S)
⇒ (∀s1,s2:S. ∀a:A. SqStable(R[a;s1;s2]))
⇒ (∀a1,a2:A. ∀s:S. ∀e,e':E.
(e1 ≤loc e
⇒ (e <loc e')
⇒ e' ≤loc e2
⇒ a1 ∈ X(e)
⇒ iterated_classrel(es;S;A;f;init;X;e;s)
⇒ a2 ∈ X(e')
⇒ R[a1;s;f a2 s]))
⇒ (∀a1,a2:A. ∀s1,s2:S. ∀e1,e2:E.
((e1 <loc e2)
⇒ a1 ∈ X(e1)
⇒ iterated_classrel(es;S;A;f;init;X;e1;s1)
⇒ a2 ∈ X(e2)
⇒ iterated_classrel(es;S;A;f;init;X;pred(e2);s2)
⇒ R[a1;s1;s2]
⇒ R[a1;s1;f a2 s2]))
⇒ (e1 <loc e2)
⇒ a ∈ X(e1)
⇒ iterated_classrel(es;S;A;f;init;X;e1;v1)
⇒ iterated_classrel(es;S;A;f;init;X;e2;v2)
⇒ (((∃e:E. ((e1 <loc e) ∧ e ≤loc e2 ∧ (∃a:A. a ∈ X(e))))
⇒ R[a;v1;v2])
∧ ((∀e:E. ((e1 <loc e)
⇒ e ≤loc e2
⇒ (∀a:A. (¬a ∈ X(e)))))
⇒ (v1 = v2 ∈ S))))
Proof
Definitions occuring in Statement :
iterated_classrel: iterated_classrel(es;S;A;f;init;X;e;v)
,
single-valued-classrel: single-valued-classrel(es;X;T)
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-le: e ≤loc e'
,
es-locl: (e <loc e')
,
es-pred: pred(e)
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
sq_stable: SqStable(P)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s1;s2;s3]
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
not: ¬A
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
,
single-valued-bag: single-valued-bag(b;T)
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
strongwellfounded: SWellFounded(R[x; y])
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
guard: {T}
,
nat: ℕ
,
prop: ℙ
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
less_than: a < b
,
squash: ↓T
,
iterated_classrel: iterated_classrel(es;S;A;f;init;X;e;v)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
so_apply: x[s1;s2;s3]
,
sq_stable: SqStable(P)
,
sq_type: SQType(T)
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
es-locl: (e <loc e')
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
cand: A c∧ B
,
es-le: e ≤loc e'
,
label: ...$L... t
Latex:
\mforall{}[Info,A,S:Type]. \mforall{}[init:Id {}\mrightarrow{} bag(S)]. \mforall{}[f:A {}\mrightarrow{} S {}\mrightarrow{} S]. \mforall{}[X:EClass(A)].
\mforall{}es:EO+(Info). \mforall{}R:A {}\mrightarrow{} S {}\mrightarrow{} S {}\mrightarrow{} \mBbbP{}. \mforall{}e1,e2:E. \mforall{}v1,v2:S. \mforall{}a:A.
(single-valued-classrel(es;X;A)
{}\mRightarrow{} single-valued-bag(init loc(e1);S)
{}\mRightarrow{} (\mforall{}s1,s2:S. \mforall{}a:A. SqStable(R[a;s1;s2]))
{}\mRightarrow{} (\mforall{}a1,a2:A. \mforall{}s:S. \mforall{}e,e':E.
(e1 \mleq{}loc e
{}\mRightarrow{} (e <loc e')
{}\mRightarrow{} e' \mleq{}loc e2
{}\mRightarrow{} a1 \mmember{} X(e)
{}\mRightarrow{} iterated\_classrel(es;S;A;f;init;X;e;s)
{}\mRightarrow{} a2 \mmember{} X(e')
{}\mRightarrow{} R[a1;s;f a2 s]))
{}\mRightarrow{} (\mforall{}a1,a2:A. \mforall{}s1,s2:S. \mforall{}e1,e2:E.
((e1 <loc e2)
{}\mRightarrow{} a1 \mmember{} X(e1)
{}\mRightarrow{} iterated\_classrel(es;S;A;f;init;X;e1;s1)
{}\mRightarrow{} a2 \mmember{} X(e2)
{}\mRightarrow{} iterated\_classrel(es;S;A;f;init;X;pred(e2);s2)
{}\mRightarrow{} R[a1;s1;s2]
{}\mRightarrow{} R[a1;s1;f a2 s2]))
{}\mRightarrow{} (e1 <loc e2)
{}\mRightarrow{} a \mmember{} X(e1)
{}\mRightarrow{} iterated\_classrel(es;S;A;f;init;X;e1;v1)
{}\mRightarrow{} iterated\_classrel(es;S;A;f;init;X;e2;v2)
{}\mRightarrow{} (((\mexists{}e:E. ((e1 <loc e) \mwedge{} e \mleq{}loc e2 \mwedge{} (\mexists{}a:A. a \mmember{} X(e)))) {}\mRightarrow{} R[a;v1;v2])
\mwedge{} ((\mforall{}e:E. ((e1 <loc e) {}\mRightarrow{} e \mleq{}loc e2 {}\mRightarrow{} (\mforall{}a:A. (\mneg{}a \mmember{} X(e))))) {}\mRightarrow{} (v1 = v2))))
Date html generated:
2016_05_16-PM-01_52_10
Last ObjectModification:
2016_01_17-PM-08_00_34
Theory : event-ordering
Home
Index