Nuprl Lemma : l_disjoint-fpf-dom
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[f:a:A fp-> Top]. ∀[L:A List].
uiff(l_disjoint(A;fst(f);L);∀[a:A]. ¬(a ∈ L) supposing ↑a ∈ dom(f))
Proof
Definitions occuring in Statement :
fpf-dom: x ∈ dom(f)
,
fpf: a:A fp-> B[a]
,
l_disjoint: l_disjoint(T;l1;l2)
,
l_member: (x ∈ l)
,
list: T List
,
deq: EqDecider(T)
,
assert: ↑b
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
pi1: fst(t)
,
not: ¬A
,
universe: Type
Definitions unfolded in proof :
fpf-dom: x ∈ dom(f)
,
l_disjoint: l_disjoint(T;l1;l2)
,
fpf: a:A fp-> B[a]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
top: Top
,
iff: P
⇐⇒ Q
,
cand: A c∧ B
,
rev_implies: P
⇐ Q
Latex:
\mforall{}[A:Type]. \mforall{}[eq:EqDecider(A)]. \mforall{}[f:a:A fp-> Top]. \mforall{}[L:A List].
uiff(l\_disjoint(A;fst(f);L);\mforall{}[a:A]. \mneg{}(a \mmember{} L) supposing \muparrow{}a \mmember{} dom(f))
Date html generated:
2016_05_16-AM-11_36_21
Last ObjectModification:
2015_12_29-AM-09_31_11
Theory : event-ordering
Home
Index