Nuprl Lemma : lnk-decl_wf-hasloc
∀[l:IdLnk]. ∀[dt:tg:Id fp-> Type]. (lnk-decl(l;dt) ∈ k:{k:Knd| ↑hasloc(k;destination(l))} fp-> Type)
Proof
Definitions occuring in Statement :
lnk-decl: lnk-decl(l;dt)
,
fpf: a:A fp-> B[a]
,
hasloc: hasloc(k;i)
,
ldst: destination(l)
,
Knd: Knd
,
IdLnk: IdLnk
,
Id: Id
,
assert: ↑b
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
universe: Type
Definitions unfolded in proof :
lnk-decl: lnk-decl(l;dt)
,
fpf: a:A fp-> B[a]
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
prop: ℙ
,
pi1: fst(t)
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
hasloc: hasloc(k;i)
,
top: Top
,
band: p ∧b q
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
not: ¬A
,
implies: P
⇒ Q
,
false: False
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
rev_implies: P
⇐ Q
,
exists: ∃x:A. B[x]
,
Knd: Knd
,
IdLnk: IdLnk
,
Id: Id
,
sq_type: SQType(T)
,
guard: {T}
,
rcv: rcv(l,tg)
,
fpf-ap: f(x)
,
outl: outl(x)
,
pi2: snd(t)
Latex:
\mforall{}[l:IdLnk]. \mforall{}[dt:tg:Id fp-> Type]. (lnk-decl(l;dt) \mmember{} k:\{k:Knd| \muparrow{}hasloc(k;destination(l))\} fp-> Typ\000Ce)
Date html generated:
2016_05_16-AM-11_34_33
Last ObjectModification:
2015_12_29-AM-09_30_08
Theory : event-ordering
Home
Index