Nuprl Lemma : locl_one_one
∀[a,b:Id]. a = b ∈ Id supposing locl(a) = locl(b) ∈ Knd
Proof
Definitions occuring in Statement :
locl: locl(a)
,
Knd: Knd
,
Id: Id
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
equal: s = t ∈ T
Definitions unfolded in proof :
locl: locl(a)
,
Knd: Knd
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
outr: outr(x)
,
and: P ∧ Q
,
prop: ℙ
,
isl: isl(x)
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
assert: ↑b
,
btrue: tt
,
true: True
Latex:
\mforall{}[a,b:Id]. a = b supposing locl(a) = locl(b)
Date html generated:
2016_05_16-AM-10_54_39
Last ObjectModification:
2015_12_29-AM-09_08_10
Theory : event-ordering
Home
Index