Nuprl Lemma : loop-class-memory-classrel
∀[Info,B:Type]. ∀[X:EClass(B ⟶ B)]. ∀[init:Id ⟶ bag(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:B].
uiff(v ∈ loop-class-memory(X;init)(e);↓if first(e)
then v ↓∈ init loc(e)
else ∃b:B
(b ∈ loop-class-memory(X;init)(pred(e))
∧ if pred(e) ∈b X
then ∃f:B ⟶ B. (f ∈ X(pred(e)) ∧ (v = (f b) ∈ B))
else v = b ∈ B
fi )
fi )
Proof
Definitions occuring in Statement :
loop-class-memory: loop-class-memory(X;init)
,
classrel: v ∈ X(e)
,
member-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-first: first(e)
,
es-pred: pred(e)
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
exists: ∃x:A. B[x]
,
squash: ↓T
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
,
bag-member: x ↓∈ bs
,
bag: bag(T)
Definitions unfolded in proof :
loop-class-memory: loop-class-memory(X;init)
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
squash: ↓T
,
or: P ∨ Q
,
exists: ∃x:A. B[x]
,
es-p-local-pred: es-p-local-pred(es;P)
,
not: ¬A
,
false: False
,
prop: ℙ
,
rev_uimplies: rev_uimplies(P;Q)
,
guard: {T}
,
cand: A c∧ B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
classrel: v ∈ X(e)
,
bag-member: x ↓∈ bs
,
bfalse: ff
,
es-locl: (e <loc e')
,
nat: ℕ
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
iff: P
⇐⇒ Q
,
true: True
,
rev_implies: P
⇐ Q
,
es-E: E
,
es-base-E: es-base-E(es)
Latex:
\mforall{}[Info,B:Type]. \mforall{}[X:EClass(B {}\mrightarrow{} B)]. \mforall{}[init:Id {}\mrightarrow{} bag(B)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:B].
uiff(v \mmember{} loop-class-memory(X;init)(e);\mdownarrow{}if first(e)
then v \mdownarrow{}\mmember{} init loc(e)
else \mexists{}b:B
(b \mmember{} loop-class-memory(X;init)(pred(e))
\mwedge{} if pred(e) \mmember{}\msubb{} X
then \mexists{}f:B {}\mrightarrow{} B. (f \mmember{} X(pred(e)) \mwedge{} (v = (f b)))
else v = b
fi )
fi )
Date html generated:
2016_05_16-PM-11_39_48
Last ObjectModification:
2016_01_17-PM-07_20_19
Theory : event-ordering
Home
Index