Nuprl Lemma : loop-class-memory-exists
∀[Info,B:Type]. ∀[X:EClass(B ⟶ B)]. ∀[init:Id ⟶ bag(B)]. ∀[es:EO+(Info)]. ∀[e:E].
uiff(0 < #(init loc(e));↓∃v:B. v ∈ loop-class-memory(X;init)(e))
Proof
Definitions occuring in Statement :
loop-class-memory: loop-class-memory(X;init)
,
classrel: v ∈ X(e)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
less_than: a < b
,
uiff: uiff(P;Q)
,
uall: ∀[x:A]. B[x]
,
exists: ∃x:A. B[x]
,
squash: ↓T
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
,
bag-size: #(bs)
,
bag: bag(T)
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
strongwellfounded: SWellFounded(R[x; y])
,
exists: ∃x:A. B[x]
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
guard: {T}
,
uiff: uiff(P;Q)
,
squash: ↓T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
decidable: Dec(P)
,
or: P ∨ Q
,
less_than: a < b
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
loop-class-memory: loop-class-memory(X;init)
,
rev_uimplies: rev_uimplies(P;Q)
,
cand: A c∧ B
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
es-p-local-pred: es-p-local-pred(es;P)
,
es-locl: (e <loc e')
,
es-E: E
,
es-base-E: es-base-E(es)
Latex:
\mforall{}[Info,B:Type]. \mforall{}[X:EClass(B {}\mrightarrow{} B)]. \mforall{}[init:Id {}\mrightarrow{} bag(B)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E].
uiff(0 < \#(init loc(e));\mdownarrow{}\mexists{}v:B. v \mmember{} loop-class-memory(X;init)(e))
Date html generated:
2016_05_16-PM-11_37_31
Last ObjectModification:
2016_01_17-PM-07_17_27
Theory : event-ordering
Home
Index