Nuprl Lemma : ma-state-subtype2
∀[ds,ds':ltg:Id fp-> Type]. State(ds') ⊆ State(ds) supposing ds ⊆ ds'
Proof
Definitions occuring in Statement :
ma-state: State(ds)
,
fpf-sub: f ⊆ g
,
fpf: a:A fp-> B[a]
,
id-deq: IdDeq
,
Id: Id
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
subtype: S ⊆ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
subtype: S ⊆ T
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Latex:
\mforall{}[ds,ds':ltg:Id fp-> Type]. State(ds') \msubseteq{} State(ds) supposing ds \msubseteq{} ds'
Date html generated:
2016_05_16-AM-11_38_58
Last ObjectModification:
2015_12_29-AM-09_33_27
Theory : event-ordering
Home
Index