Nuprl Lemma : max-fst-property
∀[Info,A,T:Type].
∀es:EO+(Info). ∀X:EClass(T × A). ∀e:E.
{(fst(MaxFst(X)(e)) ~ imax-list(map(λe.(fst(X(e)));≤(X)(e))))
∧ (∃mxe:E(X)
(mxe ≤loc e
∧ (MaxFst(X)(e) = X(mxe) ∈ (T × A))
∧ (∀e':E(X). (e' ≤loc e
⇒ ((fst(X(e'))) ≤ (fst(X(mxe))))))))}
supposing ↑e ∈b MaxFst(X)
supposing T ⊆r ℤ
Proof
Definitions occuring in Statement :
max-fst-class: MaxFst(X)
,
es-interface-predecessors: ≤(X)(e)
,
es-E-interface: E(X)
,
eclass-val: X(e)
,
in-eclass: e ∈b X
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-le: e ≤loc e'
,
es-E: E
,
imax-list: imax-list(L)
,
map: map(f;as)
,
assert: ↑b
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
guard: {T}
,
pi1: fst(t)
,
le: A ≤ B
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
lambda: λx.A[x]
,
product: x:A × B[x]
,
int: ℤ
,
universe: Type
,
sqequal: s ~ t
,
equal: s = t ∈ T
Definitions unfolded in proof :
guard: {T}
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
and: P ∧ Q
,
cand: A c∧ B
,
nat: ℕ
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
or: P ∨ Q
,
pi1: fst(t)
,
cons: [a / b]
,
colength: colength(L)
,
decidable: Dec(P)
,
nil: []
,
it: ⋅
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
es-E-interface: E(X)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
,
bool: 𝔹
,
unit: Unit
,
uiff: uiff(P;Q)
,
bfalse: ff
,
bnot: ¬bb
,
le: A ≤ B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
imax-list: imax-list(L)
,
accum_list: accum_list(a,x.f[a; x];x.base[x];L)
,
combine-list: combine-list(x,y.f[x; y];L)
,
subtract: n - m
,
sq_stable: SqStable(P)
,
pi2: snd(t)
Latex:
\mforall{}[Info,A,T:Type].
\mforall{}es:EO+(Info). \mforall{}X:EClass(T \mtimes{} A). \mforall{}e:E.
\{(fst(MaxFst(X)(e)) \msim{} imax-list(map(\mlambda{}e.(fst(X(e)));\mleq{}(X)(e))))
\mwedge{} (\mexists{}mxe:E(X)
(mxe \mleq{}loc e
\mwedge{} (MaxFst(X)(e) = X(mxe))
\mwedge{} (\mforall{}e':E(X). (e' \mleq{}loc e {}\mRightarrow{} ((fst(X(e'))) \mleq{} (fst(X(mxe))))))))\}
supposing \muparrow{}e \mmember{}\msubb{} MaxFst(X)
supposing T \msubseteq{}r \mBbbZ{}
Date html generated:
2016_05_17-AM-07_03_36
Last ObjectModification:
2016_01_17-PM-07_36_52
Theory : event-ordering
Home
Index