Nuprl Lemma : member-interface-at
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[e:E(X)]. (e ∈ E(X@loc(e)))
Proof
Definitions occuring in Statement :
es-interface-at: X@i
,
es-E-interface: E(X)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-loc: loc(e)
,
uall: ∀[x:A]. B[x]
,
top: Top
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x y.t[x; y]
,
subtype_rel: A ⊆r B
,
so_apply: x[s1;s2]
,
es-E-interface: E(X)
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
cand: A c∧ B
,
sq_stable: SqStable(P)
,
implies: P
⇒ Q
,
squash: ↓T
,
prop: ℙ
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X:EClass(Top)]. \mforall{}[e:E(X)]. (e \mmember{} E(X@loc(e)))
Date html generated:
2016_05_16-PM-10_54_57
Last ObjectModification:
2016_01_17-PM-07_19_07
Theory : event-ordering
Home
Index