Nuprl Lemma : parallel-class-bind-right
∀[Info,T,S:Type]. ∀[X:EClass(T)]. ∀[Y,Z:T ⟶ EClass(S)]. (X >x> Y[x] || Z[x] = X >x> Y[x] || X >x> Z[x] ∈ EClass(S))
Proof
Definitions occuring in Statement :
parallel-class: X || Y
,
bind-class: X >x> Y[x]
,
eclass: EClass(A[eo; e])
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
bind-class: X >x> Y[x]
,
parallel-class: X || Y
,
eclass: EClass(A[eo; e])
,
eclass-compose2: eclass-compose2(f;X;Y)
,
subtype_rel: A ⊆r B
,
prop: ℙ
,
uimplies: b supposing a
,
so_lambda: λ2x.t[x]
,
all: ∀x:A. B[x]
,
so_apply: x[s]
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
implies: P
⇒ Q
,
guard: {T}
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
squash: ↓T
,
true: True
Latex:
\mforall{}[Info,T,S:Type]. \mforall{}[X:EClass(T)]. \mforall{}[Y,Z:T {}\mrightarrow{} EClass(S)].
(X >x> Y[x] || Z[x] = X >x> Y[x] || X >x> Z[x])
Date html generated:
2016_05_16-PM-02_28_46
Last ObjectModification:
2016_01_17-PM-07_32_56
Theory : event-ordering
Home
Index