Nuprl Lemma : rec-bind-class_wf
∀[Info,A,B:Type]. ∀[X:A ⟶ EClass(B)]. ∀[Y:A ⟶ EClass(A)].
rec-bind-class(X;Y) ∈ A ⟶ EClass(B) supposing not-self-starting{i:l}(Info;A;Y)
Proof
Definitions occuring in Statement :
rec-bind-class: rec-bind-class(X;Y)
,
not-self-starting: not-self-starting{i:l}(Info;A;Y)
,
eclass: EClass(A[eo; e])
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
not-self-starting: not-self-starting{i:l}(Info;A;Y)
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
decidable: Dec(P)
,
or: P ∨ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
guard: {T}
,
uiff: uiff(P;Q)
,
eclass: EClass(A[eo; e])
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
rec-bind-class: rec-bind-class(X;Y)
,
mbind-class: X >>= Y
,
parallel-class: X || Y
,
bind-class: X >x> Y[x]
,
eclass-compose2: eclass-compose2(f;X;Y)
,
so_lambda: λ2x.t[x]
,
classrel: v ∈ X(e)
,
so_apply: x[s]
,
squash: ↓T
,
true: True
,
iff: P
⇐⇒ Q
,
sq_stable: SqStable(P)
,
es-le: e ≤loc e'
,
rev_implies: P
⇐ Q
,
cand: A c∧ B
,
less_than: a < b
Latex:
\mforall{}[Info,A,B:Type]. \mforall{}[X:A {}\mrightarrow{} EClass(B)]. \mforall{}[Y:A {}\mrightarrow{} EClass(A)].
rec-bind-class(X;Y) \mmember{} A {}\mrightarrow{} EClass(B) supposing not-self-starting\{i:l\}(Info;A;Y)
Date html generated:
2016_05_17-AM-00_28_37
Last ObjectModification:
2016_01_17-PM-07_04_53
Theory : event-ordering
Home
Index