Nuprl Lemma : subtype-fpf-cap-void2
∀[X:Type]. ∀[eq:EqDecider(X)]. ∀[f,g:x:X fp-> Type]. ∀[x:X]. ∀[z:g(x)?Void]. f(x)?Void ⊆r g(x)?Void supposing f || g
Proof
Definitions occuring in Statement :
fpf-compatible: f || g
,
fpf-cap: f(x)?z
,
fpf: a:A fp-> B[a]
,
deq: EqDecider(T)
,
uimplies: b supposing a
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
void: Void
,
universe: Type
Definitions unfolded in proof :
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
top: Top
,
fpf-compatible: f || g
,
fpf-cap: f(x)?z
,
implies: P
⇒ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
prop: ℙ
,
cand: A c∧ B
,
guard: {T}
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
sq_type: SQType(T)
,
not: ¬A
,
false: False
Latex:
\mforall{}[X:Type]. \mforall{}[eq:EqDecider(X)]. \mforall{}[f,g:x:X fp-> Type]. \mforall{}[x:X]. \mforall{}[z:g(x)?Void].
f(x)?Void \msubseteq{}r g(x)?Void supposing f || g
Date html generated:
2016_05_16-AM-11_09_05
Last ObjectModification:
2015_12_29-AM-09_16_28
Theory : event-ordering
Home
Index