Nuprl Lemma : subtype-fpf-void
∀[A:Type]. ∀[B1:Top]. ∀[B2:A ⟶ Type]. (a:Void fp-> B1[a] ⊆r a:A fp-> B2[a])
Proof
Definitions occuring in Statement :
fpf: a:A fp-> B[a]
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
top: Top
,
so_apply: x[s]
,
function: x:A ⟶ B[x]
,
void: Void
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
subtype_rel: A ⊆r B
Latex:
\mforall{}[A:Type]. \mforall{}[B1:Top]. \mforall{}[B2:A {}\mrightarrow{} Type]. (a:Void fp-> B1[a] \msubseteq{}r a:A fp-> B2[a])
Date html generated:
2016_05_16-AM-11_03_02
Last ObjectModification:
2015_12_29-AM-09_12_01
Theory : event-ordering
Home
Index