Nuprl Lemma : sys-antecedent-closure
∀[Info:Type]
∀es:EO+(Info). ∀X:EClass(Top). ∀fs:sys-antecedent(es;X) List. ∀s:fset(E(X)). ∃c:fset(E(X)). (c = fs closure of s)
Proof
Definitions occuring in Statement :
sys-antecedent: sys-antecedent(es;Sys)
,
es-E-interface: E(X)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
es-eq: es-eq(es)
,
fset-closure: (c = fs closure of s)
,
fset: fset(T)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
top: Top
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
strongwellfounded: SWellFounded(R[x; y])
,
exists: ∃x:A. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
es-E-interface: E(X)
,
sys-antecedent: sys-antecedent(es;Sys)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
prop: ℙ
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
nat: ℕ
,
false: False
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
not: ¬A
,
top: Top
,
or: P ∨ Q
,
cons: [a / b]
,
colength: colength(L)
,
guard: {T}
,
decidable: Dec(P)
,
nil: []
,
it: ⋅
,
sq_type: SQType(T)
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
es-causle: e c≤ e'
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
true: True
Latex:
\mforall{}[Info:Type]
\mforall{}es:EO+(Info). \mforall{}X:EClass(Top). \mforall{}fs:sys-antecedent(es;X) List. \mforall{}s:fset(E(X)).
\mexists{}c:fset(E(X)). (c = fs closure of s)
Date html generated:
2016_05_16-PM-02_49_10
Last ObjectModification:
2016_01_17-PM-07_28_40
Theory : event-ordering
Home
Index