Nuprl Lemma : three-cs-safety2
∀[V:Type]
∀eq:EqDecider(V). ∀A:Id List. ∀t:ℕ+. ∀f:(V List) ⟶ V.
((∀vs:V List. (f vs ∈ vs) supposing ||vs|| ≥ 1 )
⇒ (∀v:V. ∀s:ts-reachable(three-consensus-ts(V;A;t;f)).
(three-cs-decided(V;A;t;f;s;v)
⇒ (∃a∈A. (||s a|| ≥ 1 ) ∧ (hd(s a) = Init[v] ∈ consensus-rcv(V;A))))))
Proof
Definitions occuring in Statement :
three-cs-decided: three-cs-decided(V;A;t;f;s;v)
,
three-consensus-ts: three-consensus-ts(V;A;t;f)
,
cs-initial-rcv: Init[v]
,
consensus-rcv: consensus-rcv(V;A)
,
Id: Id
,
l_exists: (∃x∈L. P[x])
,
l_member: (x ∈ l)
,
hd: hd(l)
,
length: ||as||
,
list: T List
,
deq: EqDecider(T)
,
nat_plus: ℕ+
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
ge: i ≥ j
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
,
ts-reachable: ts-reachable(ts)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
three-cs-decided: three-cs-decided(V;A;t;f;s;v)
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
ts-reachable: ts-reachable(ts)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
ts-type: ts-type(ts)
,
pi1: fst(t)
,
three-consensus-ts: three-consensus-ts(V;A;t;f)
,
ge: i ≥ j
,
or: P ∨ Q
,
nat_plus: ℕ+
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
not: ¬A
,
top: Top
,
cons: [a / b]
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Latex:
\mforall{}[V:Type]
\mforall{}eq:EqDecider(V). \mforall{}A:Id List. \mforall{}t:\mBbbN{}\msupplus{}. \mforall{}f:(V List) {}\mrightarrow{} V.
((\mforall{}vs:V List. (f vs \mmember{} vs) supposing ||vs|| \mgeq{} 1 )
{}\mRightarrow{} (\mforall{}v:V. \mforall{}s:ts-reachable(three-consensus-ts(V;A;t;f)).
(three-cs-decided(V;A;t;f;s;v) {}\mRightarrow{} (\mexists{}a\mmember{}A. (||s a|| \mgeq{} 1 ) \mwedge{} (hd(s a) = Init[v])))))
Date html generated:
2016_05_16-PM-00_48_04
Last ObjectModification:
2016_01_17-PM-07_57_58
Theory : event-ordering
Home
Index