Nuprl Lemma : tree-flow-convergent
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[f:E(X) ⟶ E(X)].
convergent-flow(es;X;f) supposing tree-flow{i:l}(es;X;f)
Proof
Definitions occuring in Statement :
tree-flow: tree-flow{i:l}(es;X;f)
,
convergent-flow: convergent-flow(es;X;f)
,
es-E-interface: E(X)
,
eclass: EClass(A[eo; e])
,
event-ordering+: EO+(Info)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
tree-flow: tree-flow{i:l}(es;X;f)
,
and: P ∧ Q
,
exists: ∃x:A. B[x]
,
convergent-flow: convergent-flow(es;X;f)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
subtype_rel: A ⊆r B
,
es-E-interface: E(X)
,
prop: ℙ
,
not: ¬A
,
false: False
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
guard: {T}
,
sq_stable: SqStable(P)
,
squash: ↓T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
decidable: Dec(P)
,
or: P ∨ Q
,
trans: Trans(T;x,y.E[x; y])
,
true: True
,
label: ...$L... t
,
Id: Id
,
sq_type: SQType(T)
,
irrefl: Irrefl(T;x,y.E[x; y])
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[X:EClass(Top)]. \mforall{}[f:E(X) {}\mrightarrow{} E(X)].
convergent-flow(es;X;f) supposing tree-flow\{i:l\}(es;X;f)
Date html generated:
2016_05_16-PM-10_17_06
Last ObjectModification:
2016_01_17-PM-07_27_35
Theory : event-ordering
Home
Index