Nuprl Lemma : hdataflow-equal
∀[A,B:Type]. ∀[P,Q:hdataflow(A;B)].
  uiff(P = Q ∈ hdataflow(A;B);∀[inputs:A List]
                                (hdf-halted(P*(inputs)) = hdf-halted(Q*(inputs))
                                ∧ (∀[a:A]. (hdf-out(P*(inputs);a) = hdf-out(Q*(inputs);a) ∈ bag(B)))))
Proof
Definitions occuring in Statement : 
iterate-hdataflow: P*(inputs)
, 
hdf-out: hdf-out(P;x)
, 
hdf-halted: hdf-halted(P)
, 
hdataflow: hdataflow(A;B)
, 
list: T List
, 
bool: 𝔹
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
rev_implies: P 
⇐ Q
, 
hdataflow: hdataflow(A;B)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
F-bisimulation: x,y.R[x; y] is an T.F[T]-bisimulation
, 
subtype_rel: A ⊆r B
, 
strong-type-continuous: Continuous+(T.F[T])
, 
type-continuous: Continuous(T.F[T])
, 
cand: A c∧ B
, 
type-monotone: Monotone(T.F[T])
, 
top: Top
, 
hdf-halted: hdf-halted(P)
, 
isr: isr(x)
, 
not: ¬A
, 
false: False
, 
hdf-ap: X(a)
, 
hdf-out: hdf-out(P;x)
Latex:
\mforall{}[A,B:Type].  \mforall{}[P,Q:hdataflow(A;B)].
    uiff(P  =  Q;\mforall{}[inputs:A  List]
                              (hdf-halted(P*(inputs))  =  hdf-halted(Q*(inputs))
                              \mwedge{}  (\mforall{}[a:A].  (hdf-out(P*(inputs);a)  =  hdf-out(Q*(inputs);a)))))
Date html generated:
2016_05_16-AM-10_38_41
Last ObjectModification:
2015_12_28-PM-07_45_54
Theory : halting!dataflow
Home
Index