Nuprl Lemma : hdataflow-ext

[A,B:Type].  hdataflow(A;B) ≡ A ⟶ (hdataflow(A;B) × bag(B))?


Proof




Definitions occuring in Statement :  hdataflow: hdataflow(A;B) ext-eq: A ≡ B uall: [x:A]. B[x] unit: Unit function: x:A ⟶ B[x] product: x:A × B[x] union: left right universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdataflow: hdataflow(A;B) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] implies:  Q ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B

Latex:
\mforall{}[A,B:Type].    hdataflow(A;B)  \mequiv{}  A  {}\mrightarrow{}  (hdataflow(A;B)  \mtimes{}  bag(B))?



Date html generated: 2016_05_16-AM-10_37_31
Last ObjectModification: 2015_12_28-PM-07_45_27

Theory : halting!dataflow


Home Index