Nuprl Lemma : hdf-at-locs_wf

[A,B:Type]. ∀[pr:Id ⟶ hdataflow(A;B)]. ∀[i:Id]. ∀[locs:bag(Id)].  (hdf-at-locs(pr;i;locs) ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  hdf-at-locs: hdf-at-locs(pr;i;locs) hdataflow: hdataflow(A;B) Id: Id uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdf-at-locs: hdf-at-locs(pr;i;locs) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q false: False

Latex:
\mforall{}[A,B:Type].  \mforall{}[pr:Id  {}\mrightarrow{}  hdataflow(A;B)].  \mforall{}[i:Id].  \mforall{}[locs:bag(Id)].
    (hdf-at-locs(pr;i;locs)  \mmember{}  hdataflow(A;B))



Date html generated: 2016_05_16-AM-10_39_13
Last ObjectModification: 2015_12_28-PM-07_44_17

Theory : halting!dataflow


Home Index