Nuprl Lemma : hdf-bind-compose1-left
∀[A,B,C,U:Type]. ∀[f:B ⟶ C]. ∀[X:hdataflow(A;B)]. ∀[Y:C ⟶ hdataflow(A;U)].
  (f o X >>= Y = X >>= Y o f ∈ hdataflow(A;U)) supposing (valueall-type(C) and valueall-type(U))
Proof
Definitions occuring in Statement : 
hdf-bind: X >>= Y
, 
hdf-compose1: f o X
, 
hdataflow: hdataflow(A;B)
, 
compose: f o g
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
top: Top
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Latex:
\mforall{}[A,B,C,U:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:C  {}\mrightarrow{}  hdataflow(A;U)].
    (f  o  X  >>=  Y  =  X  >>=  Y  o  f)  supposing  (valueall-type(C)  and  valueall-type(U))
Date html generated:
2016_05_16-AM-10_43_32
Last ObjectModification:
2015_12_28-PM-07_41_25
Theory : halting!dataflow
Home
Index