Step
*
of Lemma
hdf-bind-gen-ap-eq
∀[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:B ⟶ hdataflow(A;C)]. ∀[hdfs:bag(hdataflow(A;C))]. ∀[a:A].
X (hdfs) >>= Y(a)
= <fst(X(a)) ([y∈bag-map(λP.(fst(P(a)));hdfs + bag-map(Y;snd(X(a))))|¬bhdf-halted(y)]) >>= Y
, ⋃p∈bag-map(λP.P(a);hdfs + bag-map(Y;snd(X(a)))).snd(p)
>
∈ (hdataflow(A;C) × bag(C))
supposing valueall-type(C)
BY
{ (Auto THEN RWO "hdf-bind-gen-ap<" 0 THEN Auto) }
Latex:
Latex:
\mforall{}[A,B,C:Type]. \mforall{}[X:hdataflow(A;B)]. \mforall{}[Y:B {}\mrightarrow{} hdataflow(A;C)]. \mforall{}[hdfs:bag(hdataflow(A;C))]. \mforall{}[a:A].
X (hdfs) >>= Y(a)
= <fst(X(a)) ([y\mmember{}bag-map(\mlambda{}P.(fst(P(a)));hdfs + bag-map(Y;snd(X(a))))|\mneg{}\msubb{}hdf-halted(y)]) >>= Y
, \mcup{}p\mmember{}bag-map(\mlambda{}P.P(a);hdfs + bag-map(Y;snd(X(a)))).snd(p)
>
supposing valueall-type(C)
By
Latex:
(Auto THEN RWO "hdf-bind-gen-ap<" 0 THEN Auto)
Home
Index