Nuprl Lemma : hdf-bind-gen-left-halt

[A,B,C:Type]. ∀[Y:B ⟶ hdataflow(A;C)]. ∀[hdfs:bag(hdataflow(A;C))].
  hdf-halt() (hdfs) >>hdf-halt() (hdfs) >>= λx.hdf-return({x}) ∈ hdataflow(A;C) supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-bind-gen: (hdfs) >>Y hdf-return: hdf-return(x) hdf-halt: hdf-halt() hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T single-bag: {x} bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q top: Top prop: hdf-bind-gen: (hdfs) >>Y bind-nxt: bind-nxt(Y;p;a) mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) band: p ∧b q ifthenelse: if then else fi  btrue: tt bool: 𝔹 unit: Unit it: bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A subtype_rel: A ⊆B pi1: fst(t) pi2: snd(t) squash: T true: True callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a)

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[Y:B  {}\mrightarrow{}  hdataflow(A;C)].  \mforall{}[hdfs:bag(hdataflow(A;C))].
    hdf-halt()  (hdfs)  >>=  Y  =  hdf-halt()  (hdfs)  >>=  \mlambda{}x.hdf-return(\{x\})  supposing  valueall-type(C)



Date html generated: 2016_05_16-AM-10_43_21
Last ObjectModification: 2016_01_17-AM-11_12_19

Theory : halting!dataflow


Home Index