Nuprl Lemma : hdf-bind_wf

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:B ⟶ hdataflow(A;C)].  X >>Y ∈ hdataflow(A;C) supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-bind: X >>Y hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a hdf-bind: X >>Y so_lambda: λ2x.t[x] all: x:A. B[x] so_apply: x[s] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:B  {}\mrightarrow{}  hdataflow(A;C)].
    X  >>=  Y  \mmember{}  hdataflow(A;C)  supposing  valueall-type(C)



Date html generated: 2016_05_16-AM-10_42_50
Last ObjectModification: 2015_12_28-PM-07_43_00

Theory : halting!dataflow


Home Index