Nuprl Lemma : hdf-buffer-transformation2

[init,L,G:Top]. ∀[m:ℕ].
  (hdf-buffer(fix((λmk-hdf.(inl a.cbva_seq(L[a]; λg.<mk-hdf, G[g]>m)))));init) 
  fix((λmk-hdf,s. (inl a.cbva_seq(λn.if (n =z m) then mk_lambdas_fun(λg.⋃f∈G[g].⋃b∈s.f b;m) else L[a] fi ;
                                      λg.<mk-hdf if bag-null(select_fun_last(g;m)) then else select_fun_last(g;m) fi 
                                         select_fun_last(g;m)
                                         >1))))) 
    init)


Proof




Definitions occuring in Statement :  hdf-buffer: hdf-buffer(X;bs) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top so_apply: x[s] apply: a fix: fix(F) lambda: λx.A[x] pair: <a, b> inl: inl x add: m natural_number: $n sqequal: t bag-combine: x∈bs.f[x] bag-null: bag-null(bs) select_fun_last: select_fun_last(g;m) mk_lambdas_fun: mk_lambdas_fun(F;m) cbva_seq: cbva_seq(L; F; m)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-null: bag-null(bs) ifthenelse: if then else fi  so_apply: x[s] eq_int: (i =z j) hdf-buffer: hdf-buffer(X;bs) bfalse: ff btrue: tt hdf-halted: hdf-halted(P) hdf-ap: X(a) mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) hdf-run: hdf-run(P) hdf-halt: hdf-halt() isr: isr(x) so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A fun_exp: f^n primrec: primrec(n;b;c) cbva_seq: cbva_seq(L; F; m) callbyvalueall_seq: callbyvalueall_seq(L;G;F;n;m) le_int: i ≤j bnot: ¬bb lt_int: i <j mk_lambdas_fun: mk_lambdas_fun(F;m) mk_lambdas-fun: mk_lambdas-fun(F;G;n;m) bag-combine: x∈bs.f[x] bag-union: bag-union(bbs) concat: concat(ll) reduce: reduce(f;k;as) list_ind: list_ind append: as bs cons: [a b] nil: [] it: bag-map: bag-map(f;bs) map: map(f;as) null: null(as) select_fun_last: select_fun_last(g;m) select_fun_ap: select_fun_ap(g;n;m) mk_lambdas: mk_lambdas(F;m) subtract: m decidable: Dec(P) exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit uiff: uiff(P;Q) sq_type: SQType(T) assert: b compose: g subtype_rel: A ⊆B

Latex:
\mforall{}[init,L,G:Top].  \mforall{}[m:\mBbbN{}].
    (hdf-buffer(fix((\mlambda{}mk-hdf.(inl  (\mlambda{}a.cbva\_seq(L[a];  \mlambda{}g.<mk-hdf,  G[g]>  m)))));init) 
    \msim{}  fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(\mlambda{}n.if  (n  =\msubz{}  m)
                                                                                  then  mk\_lambdas\_fun(\mlambda{}g.\mcup{}f\mmember{}G[g].\mcup{}b\mmember{}s.f  b;m)
                                                                                  else  L[a]  n
                                                                                  fi  ;  \mlambda{}g.<mk-hdf 
                                                                                                    if  bag-null(select\_fun\_last(g;m))
                                                                                                    then  s
                                                                                                    else  select\_fun\_last(g;m)
                                                                                                    fi 
                                                                                                  ,  select\_fun\_last(g;m)
                                                                                                  >  m  +  1))))) 
        init)



Date html generated: 2016_05_16-AM-10_46_27
Last ObjectModification: 2016_01_17-AM-11_10_29

Theory : halting!dataflow


Home Index