Step
*
of Lemma
hdf-buffer-transformation3
∀[init,s,L,S,G:Top]. ∀[m:ℕ].
(hdf-buffer(fix((λmk-hdf,s. (inl (λa.cbva_seq(L[s;a]; λg.<mk-hdf S[s;a;g], G[s;a;g]>; m))))) s;init)
~ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if (n =z m)
then mk_lambdas_fun(λg.⋃f∈G[fst(s);a;g].⋃b∈snd(s).f b;m)
else L[fst(s);a] n
fi ; λg.<mk-hdf
<S[fst(s);a;partial_ap(g;m + 1;m)]
, if bag-null(select_fun_last(g;m))
then snd(s)
else select_fun_last(g;m)
fi
>
, select_fun_last(g;m)
>; m + 1)))))
<s, init>)
BY
{ (Auto
THEN ProcTransRepUR ``hdf-buffer so_apply bag-null`` 0
THEN (RW LiftAllC 0 THEN Reduce 0)
THEN SqequalSqle
THEN OneFixpointLeast
THEN Repeat (MoveToConcl (-2))
THEN NatInd (-1)
THEN (UnivCD THENA Auto)
THEN Try (Complete ((Reduce 0 THEN Strictness THEN Auto)))
THEN (RWO "fun_exp_unroll_1" 0 THENA Auto)) }
1
1. j : ℤ
2. 0 < j
3. ∀init,s,L,S,G:Top. ∀m:ℕ.
(λmk-hdf,s0. let X,bs = s0
in case X
of inl(y) =>
inl (λa.let X',fs = y a
in let bs' ⟵ ⋃f∈fs.⋃b∈bs.f b
in <mk-hdf <X', case null(bs') of inl() => bs | inr() => bs'>, bs'>)
| inr(y) =>
inr ⋅ ^j - 1
⊥
<fix((λmk-hdf,s. (inl (λa.cbva_seq(L s a; λg.<mk-hdf (S s a g), G s a g>; m))))) s, init>
≤ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if n=m
then mk_lambdas_fun(λg.⋃f∈G (fst(s)) a g.⋃b∈snd(s).f b;m)
else (L (fst(s)) a n); λg.<mk-hdf
<S (fst(s)) a partial_ap(g;m + 1;m)
, case null(select_fun_last(g;m))
of inl() =>
snd(s)
| inr() =>
select_fun_last(g;m)
>
, select_fun_last(g;m)
>; m + 1)))))
<s, init>)
4. init : Top@i
5. s : Top@i
6. L : Top@i
7. S : Top@i
8. G : Top@i
9. m : ℕ@i
⊢ (λx.((λmk-hdf,s0. let X,bs = s0
in case X
of inl(y) =>
inl (λa.let X',fs = y a
in let bs' ⟵ ⋃f∈fs.⋃b∈bs.f b
in <mk-hdf <X', case null(bs') of inl() => bs | inr() => bs'>, bs'>)
| inr(y) =>
inr ⋅ )
(λmk-hdf,s0. let X,bs = s0
in case X
of inl(y) =>
inl (λa.let X',fs = y a
in let bs' ⟵ ⋃f∈fs.⋃b∈bs.f b
in <mk-hdf <X', case null(bs') of inl() => bs | inr() => bs'>, bs'>)
| inr(y) =>
inr ⋅ ^j - 1
x)))
⊥
<fix((λmk-hdf,s. (inl (λa.cbva_seq(L s a; λg.<mk-hdf (S s a g), G s a g>; m))))) s, init>
≤ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if n=m
then mk_lambdas_fun(λg.⋃f∈G (fst(s)) a g.⋃b∈snd(s).f b;m)
else (L (fst(s)) a n); λg.<mk-hdf
<S (fst(s)) a partial_ap(g;m + 1;m)
, case null(select_fun_last(g;m))
of inl() =>
snd(s)
| inr() =>
select_fun_last(g;m)
>
, select_fun_last(g;m)
>; m + 1)))))
<s, init>
2
1. j : ℤ
2. 0 < j
3. ∀init,s,L,S,G:Top. ∀m:ℕ.
(λmk-hdf,s. (inl (λa.cbva_seq(λn.if n=m
then mk_lambdas_fun(λg.⋃f∈G (fst(s)) a g.⋃b∈snd(s).f b;m)
else (L (fst(s)) a n); λg.<mk-hdf
<S (fst(s)) a partial_ap(g;m + 1;m)
, case null(select_fun_last(g;m))
of inl() =>
snd(s)
| inr() =>
select_fun_last(g;m)
>
, select_fun_last(g;m)
>; m + 1)))^j - 1
⊥
<s, init> ≤ fix((λmk-hdf,s0. let X,bs = s0
in case X
of inl(y) =>
inl (λa.let X',fs = y a
in let bs' ⟵ ⋃f∈fs.⋃b∈bs.f b
in <mk-hdf <X', case null(bs') of inl() => bs | inr() => bs'>, bs'>)
| inr(y) =>
inr ⋅ ))
<fix((λmk-hdf,s. (inl (λa.cbva_seq(L s a; λg.<mk-hdf (S s a g), G s a g>; m))))) s, init>)
4. init : Top@i
5. s : Top@i
6. L : Top@i
7. S : Top@i
8. G : Top@i
9. m : ℕ@i
⊢ (λx.((λmk-hdf,s. (inl (λa.cbva_seq(λn.if n=m
then mk_lambdas_fun(λg.⋃f∈G (fst(s)) a g.⋃b∈snd(s).f b;m)
else (L (fst(s)) a n); λg.<mk-hdf
<S (fst(s)) a partial_ap(g;m + 1;m)
, case null(select_fun_last(g;m))
of inl() =>
snd(s)
| inr() =>
select_fun_last(g;m)
>
, select_fun_last(g;m)
>; m + 1))))
(λmk-hdf,s. (inl (λa.cbva_seq(λn.if n=m
then mk_lambdas_fun(λg.⋃f∈G (fst(s)) a g.⋃b∈snd(s).f b;m)
else (L (fst(s)) a n); λg.<mk-hdf
<S (fst(s)) a partial_ap(g;m + 1;m)
, case null(select_fun_last(g;m))
of inl() =>
snd(s)
| inr() =>
select_fun_last(g;m)
>
, select_fun_last(g;m)
>; m + 1)))^j - 1
x)))
⊥
<s, init> ≤ fix((λmk-hdf,s0. let X,bs = s0
in case X
of inl(y) =>
inl (λa.let X',fs = y a
in let bs' ⟵ ⋃f∈fs.⋃b∈bs.f b
in <mk-hdf <X', case null(bs') of inl() => bs | inr() => bs'>, bs'>)
| inr(y) =>
inr ⋅ ))
<fix((λmk-hdf,s. (inl (λa.cbva_seq(L s a; λg.<mk-hdf (S s a g), G s a g>; m))))) s, init>
Latex:
Latex:
\mforall{}[init,s,L,S,G:Top]. \mforall{}[m:\mBbbN{}].
(hdf-buffer(fix((\mlambda{}mk-hdf,s. (inl (\mlambda{}a.cbva\_seq(L[s;a]; \mlambda{}g.<mk-hdf S[s;a;g], G[s;a;g]> m))))) s;ini\000Ct)
\msim{} fix((\mlambda{}mk-hdf,s. (inl (\mlambda{}a.cbva\_seq(\mlambda{}n.if (n =\msubz{} m)
then mk\_lambdas\_fun(\mlambda{}g.\mcup{}f\mmember{}G[fst(s);a;g].\mcup{}b\mmember{}snd(s).f b;m)
else L[fst(s);a] n
fi ; \mlambda{}g.<mk-hdf
<S[fst(s);a;partial\_ap(g;m + 1;m)]
, if bag-null(select\_fun\_last(g;m))
then snd(s)
else select\_fun\_last(g;m)
fi
>
, select\_fun\_last(g;m)
> m + 1)))))
<s, init>)
By
Latex:
(Auto
THEN ProcTransRepUR ``hdf-buffer so\_apply bag-null`` 0
THEN (RW LiftAllC 0 THEN Reduce 0)
THEN SqequalSqle
THEN OneFixpointLeast
THEN Repeat (MoveToConcl (-2))
THEN NatInd (-1)
THEN (UnivCD THENA Auto)
THEN Try (Complete ((Reduce 0 THEN Strictness THEN Auto)))
THEN (RWO "fun\_exp\_unroll\_1" 0 THENA Auto))
Home
Index