Nuprl Lemma : hdf-buffer2_wf
∀[A,B:Type]. ∀[X:hdataflow(A;B ⟶ B)]. ∀[bs:bag(B)]. hdf-buffer2(X;bs) ∈ hdataflow(A;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement :
hdf-buffer2: hdf-buffer2(X;bs)
,
hdataflow: hdataflow(A;B)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
hdf-buffer2: hdf-buffer2(X;bs)
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
callbyvalueall: callbyvalueall,
has-value: (a)↓
,
has-valueall: has-valueall(a)
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
Latex:
\mforall{}[A,B:Type]. \mforall{}[X:hdataflow(A;B {}\mrightarrow{} B)]. \mforall{}[bs:bag(B)].
hdf-buffer2(X;bs) \mmember{} hdataflow(A;B) supposing valueall-type(B)
Date html generated:
2016_05_16-AM-10_40_11
Last ObjectModification:
2015_12_28-PM-07_43_42
Theory : halting!dataflow
Home
Index