Nuprl Lemma : hdf-buffer_wf
∀[A,B:Type]. ∀[X:hdataflow(A;B ⟶ bag(B))]. ∀[bs:bag(B)].  hdf-buffer(X;bs) ∈ hdataflow(A;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-buffer: hdf-buffer(X;bs)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
hdf-buffer: hdf-buffer(X;bs)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B  {}\mrightarrow{}  bag(B))].  \mforall{}[bs:bag(B)].
    hdf-buffer(X;bs)  \mmember{}  hdataflow(A;B)  supposing  valueall-type(B)
Date html generated:
2016_05_16-AM-10_40_00
Last ObjectModification:
2016_01_17-AM-11_13_07
Theory : halting!dataflow
Home
Index