Nuprl Lemma : hdf-cbva-simple_wf

[U,T:Type]. ∀[m:ℕ+]. ∀[A:ℕm ⟶ ValueAllType]. ∀[L:U ⟶ i:ℕm ⟶ funtype(i;λk.bag(A k);bag(A i))].
  (hdf-cbva-simple(L;m) ∈ hdataflow(U;A (m 1)))


Proof




Definitions occuring in Statement :  hdf-cbva-simple: hdf-cbva-simple(L;m) hdataflow: hdataflow(A;B) int_seg: {i..j-} nat_plus: + vatype: ValueAllType uall: [x:A]. B[x] member: t ∈ T apply: a lambda: λx.A[x] function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type bag: bag(T) funtype: funtype(n;A;T)
Definitions unfolded in proof :  vatype: ValueAllType hdataflow: hdataflow(A;B) corec: corec(T.F[T]) member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q hdf-cbva-simple: hdf-cbva-simple(L;m) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  nat_plus: + int_seg: {i..j-} lelt: i ≤ j < k subtype_rel: A ⊆B sq_stable: SqStable(P) squash: T so_apply: x[s] le: A ≤ B less_than': less_than'(a;b)

Latex:
\mforall{}[U,T:Type].  \mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[A:\mBbbN{}m  {}\mrightarrow{}  ValueAllType].  \mforall{}[L:U  {}\mrightarrow{}  i:\mBbbN{}m  {}\mrightarrow{}  funtype(i;\mlambda{}k.bag(A  k);bag(A  i))].
    (hdf-cbva-simple(L;m)  \mmember{}  hdataflow(U;A  (m  -  1)))



Date html generated: 2016_05_16-AM-10_44_47
Last ObjectModification: 2016_01_17-AM-11_12_25

Theory : halting!dataflow


Home Index