Nuprl Lemma : hdf-comb2_wf

[A,B,C,D:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)]. ∀[f:B ⟶ C ⟶ bag(D)].
  hdf-comb2(f;X;Y) ∈ hdataflow(A;D) supposing (↓C) ∧ valueall-type(D)


Proof




Definitions occuring in Statement :  hdf-comb2: hdf-comb2(f;X;Y) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] squash: T and: P ∧ Q member: t ∈ T function: x:A ⟶ B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a hdf-comb2: hdf-comb2(f;X;Y) and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] squash: T exists: x:A. B[x] prop:

Latex:
\mforall{}[A,B,C,D:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].  \mforall{}[f:B  {}\mrightarrow{}  C  {}\mrightarrow{}  bag(D)].
    hdf-comb2(f;X;Y)  \mmember{}  hdataflow(A;D)  supposing  (\mdownarrow{}C)  \mwedge{}  valueall-type(D)



Date html generated: 2016_05_16-AM-10_40_48
Last ObjectModification: 2016_01_17-AM-11_12_13

Theory : halting!dataflow


Home Index