Nuprl Lemma : hdf-comb3_wf
∀[A,C,B1,B2,B3:Type]. ∀[f:B1 ⟶ B2 ⟶ B3 ⟶ bag(C)]. ∀[X:hdataflow(A;B1)]. ∀[Y:hdataflow(A;B2)]. ∀[Z:hdataflow(A;B3)].
  hdf-comb3(f;X;Y;Z) ∈ hdataflow(A;C) supposing ((↓B2) ∧ (↓B3)) ∧ valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-comb3: hdf-comb3(f;X;Y;Z)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
hdf-comb3: hdf-comb3(f;X;Y;Z)
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
Latex:
\mforall{}[A,C,B1,B2,B3:Type].  \mforall{}[f:B1  {}\mrightarrow{}  B2  {}\mrightarrow{}  B3  {}\mrightarrow{}  bag(C)].  \mforall{}[X:hdataflow(A;B1)].  \mforall{}[Y:hdataflow(A;B2)].
\mforall{}[Z:hdataflow(A;B3)].
    hdf-comb3(f;X;Y;Z)  \mmember{}  hdataflow(A;C)  supposing  ((\mdownarrow{}B2)  \mwedge{}  (\mdownarrow{}B3))  \mwedge{}  valueall-type(C)
Date html generated:
2016_05_16-AM-10_40_52
Last ObjectModification:
2016_01_17-AM-11_12_16
Theory : halting!dataflow
Home
Index