Nuprl Lemma : hdf-comb3_wf
∀[A,C,B1,B2,B3:Type]. ∀[f:B1 ⟶ B2 ⟶ B3 ⟶ bag(C)]. ∀[X:hdataflow(A;B1)]. ∀[Y:hdataflow(A;B2)]. ∀[Z:hdataflow(A;B3)].
hdf-comb3(f;X;Y;Z) ∈ hdataflow(A;C) supposing ((↓B2) ∧ (↓B3)) ∧ valueall-type(C)
Proof
Definitions occuring in Statement :
hdf-comb3: hdf-comb3(f;X;Y;Z)
,
hdataflow: hdataflow(A;B)
,
valueall-type: valueall-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
squash: ↓T
,
and: P ∧ Q
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
,
bag: bag(T)
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
hdf-comb3: hdf-comb3(f;X;Y;Z)
,
and: P ∧ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
squash: ↓T
,
exists: ∃x:A. B[x]
,
prop: ℙ
Latex:
\mforall{}[A,C,B1,B2,B3:Type]. \mforall{}[f:B1 {}\mrightarrow{} B2 {}\mrightarrow{} B3 {}\mrightarrow{} bag(C)]. \mforall{}[X:hdataflow(A;B1)]. \mforall{}[Y:hdataflow(A;B2)].
\mforall{}[Z:hdataflow(A;B3)].
hdf-comb3(f;X;Y;Z) \mmember{} hdataflow(A;C) supposing ((\mdownarrow{}B2) \mwedge{} (\mdownarrow{}B3)) \mwedge{} valueall-type(C)
Date html generated:
2016_05_16-AM-10_40_52
Last ObjectModification:
2016_01_17-AM-11_12_16
Theory : halting!dataflow
Home
Index