Nuprl Lemma : hdf-compose1-ap

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[f:B ⟶ C]. ∀[a:A].
  X(a) ~ <(fst(X(a))), bag-map(f;snd(X(a)))> supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-compose1: X hdf-ap: X(a) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) function: x:A ⟶ B[x] pair: <a, b> universe: Type sqequal: t bag-map: bag-map(f;bs)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a hdf-ap: X(a) hdf-compose1: X mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  top: Top subtype_rel: A ⊆B ext-eq: A ≡ B assert: b bfalse: ff false: False prop: hdf-halt: hdf-halt() pi1: fst(t) pi2: snd(t) callbyvalueall: callbyvalueall evalall: evalall(t) bag-map: bag-map(f;bs) map: map(f;as) list_ind: list_ind empty-bag: {} nil: [] exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb has-value: (a)↓ has-valueall: has-valueall(a) not: ¬A true: True

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[f:B  {}\mrightarrow{}  C].  \mforall{}[a:A].
    f  o  X(a)  \msim{}  <f  o  (fst(X(a))),  bag-map(f;snd(X(a)))>  supposing  valueall-type(C)



Date html generated: 2016_05_16-AM-10_39_24
Last ObjectModification: 2015_12_28-PM-07_44_53

Theory : halting!dataflow


Home Index