Step
*
of Lemma
hdf-compose2-transformation1-2-2
∀[L1,L2,G1,G2,init,S:Base]. ∀[m1,m2:ℕ+].
(fix((λmk-hdf.(inl (λa.cbva_seq(L1[a]; λg.<mk-hdf, G1[g]>; m1)))))
o (fix((λmk-hdf,s. (inl (λa.cbva_seq(L2[s;a]; λg.<mk-hdf S[g;s], G2[g]>; m2))))) init)
~ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if n <z m1 then L1[a] n
if n <z m1 + m2 then mk_lambdas(L2[s;a] (n - m1);m1)
else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.⋃f∈G1[g1].⋃b∈G2[g2].f b;m2);m1)
fi ; λg.<mk-hdf S[partial_ap_gen(g;(m1 + m2) + 1;m1;m2);s]
, select_fun_last(g;m1 + m2)
>; (m1 + m2) + 1)))))
init)
BY
{ (Auto
THEN RepUR ``hdf-compose2 mk-hdf ifthenelse hdf-halted hdf-halt hdf-run hdf-ap lt_int bor isr bfalse btrue`` 0
THEN LiftAll 0
THEN Reduce 0
THEN SqequalInduction
THEN (UnivCD THENA Auto)
THEN ...
THEN RepeatFor 2 ((RWO "cbva_seq-spread" 0 THENA Auto))
THEN Reduce 0
THEN (RWO "cbva_seq_extend" 0 THENA Auto)
THEN (RWO "cbva_seq-combine" 0 THENA Auto)
THEN Reduce 0
THEN RepUR ``ifthenelse lt_int btrue eq_int`` 0
THEN LiftAll 0
THEN Reduce 0
THEN Repeat ((SqequalInductionAuxAux false THEN Try (Complete (Auto))))
THEN (Subst ⌜m1 + m2 + 1 ~ (m1 + m2) + 1⌝ 0⋅ THENA Auto)
THEN (RWO "cbva_seq-list-case2" 0 THENA Auto)
THEN BLemma `cbva_seq-sqequal-n`
THEN Try (Complete (Auto'))
THEN RepeatFor 2 ((SqequalNCanonicalCD THENA Auto'))
THEN Try (Complete (Auto))
THEN Try (Complete ((RWO "select_fun_ap_is_last1" 0 THEN Auto)))
THEN Subst ⌜partial_ap(partial_ap_gen(g;(m1 + m2) + 1;m1;m2 + 1);m2 + 1;m2) ~ partial_ap_gen(g;(m1 + m2) + 1;m1;m2)⌝
0⋅
THEN Try (Complete ((BLemma `partial_ap_of_partial_ap_gen1` THEN Auto)))
THEN Try (Complete ((BackThruSomeHyp THEN Auto)))) }
Latex:
Latex:
\mforall{}[L1,L2,G1,G2,init,S:Base]. \mforall{}[m1,m2:\mBbbN{}\msupplus{}].
(fix((\mlambda{}mk-hdf.(inl (\mlambda{}a.cbva\_seq(L1[a]; \mlambda{}g.<mk-hdf, G1[g]> m1)))))
o (fix((\mlambda{}mk-hdf,s. (inl (\mlambda{}a.cbva\_seq(L2[s;a]; \mlambda{}g.<mk-hdf S[g;s], G2[g]> m2))))) init)
\msim{} fix((\mlambda{}mk-hdf,s. (inl (\mlambda{}a.cbva\_seq(\mlambda{}n.if n <z m1 then L1[a] n
if n <z m1 + m2 then mk\_lambdas(L2[s;a] (n - m1);m1)
else mk\_lambdas\_fun(\mlambda{}g1.mk\_lambdas\_fun(\mlambda{}g2.\mcup{}f\mmember{}G1[g1].
\mcup{}b\mmember{}G2[g2].
f b;m2);m1)
fi ; \mlambda{}g.<mk-hdf S[partial\_ap\_gen(g;(m1 + m2) + 1;m1;m2);s]
, select\_fun\_last(g;m1 + m2)
> (m1 + m2) + 1)))))
init)
By
Latex:
(Auto
THEN ...
THEN LiftAll 0
THEN Reduce 0
THEN SqequalInduction
THEN (UnivCD THENA Auto)
THEN ...
THEN RepeatFor 2 ((RWO "cbva\_seq-spread" 0 THENA Auto))
THEN Reduce 0
THEN (RWO "cbva\_seq\_extend" 0 THENA Auto)
THEN (RWO "cbva\_seq-combine" 0 THENA Auto)
THEN Reduce 0
THEN RepUR ``ifthenelse lt\_int btrue eq\_int`` 0
THEN LiftAll 0
THEN Reduce 0
THEN Repeat ((SqequalInductionAuxAux false THEN Try (Complete (Auto))))
THEN (Subst \mkleeneopen{}m1 + m2 + 1 \msim{} (m1 + m2) + 1\mkleeneclose{} 0\mcdot{} THENA Auto)
THEN (RWO "cbva\_seq-list-case2" 0 THENA Auto)
THEN BLemma `cbva\_seq-sqequal-n`
THEN Try (Complete (Auto'))
THEN RepeatFor 2 ((SqequalNCanonicalCD THENA Auto'))
THEN Try (Complete (Auto))
THEN Try (Complete ((RWO "select\_fun\_ap\_is\_last1" 0 THEN Auto)))
THEN Subst \mkleeneopen{}partial\_ap(partial\_ap\_gen(g;(m1 + m2) + 1;m1;m2 + 1);m2 + 1;m2) \msim{} partial\_ap\_gen(g;(m1
+ m2)
+ 1;m1;m2)\mkleeneclose{} 0\mcdot{}
THEN Try (Complete ((BLemma `partial\_ap\_of\_partial\_ap\_gen1` THEN Auto)))
THEN Try (Complete ((BackThruSomeHyp THEN Auto))))
Home
Index