Step
*
of Lemma
hdf-compose2-transformation2
∀[L1,L2,G1,G2,init,S:Top]. ∀[m1,m2:ℕ].
  (fix((λmk-hdf.(inl (λa.cbva_seq(L1[a]; λg.<mk-hdf, G1[g]> m1)))))
   o (fix((λmk-hdf,s. (inl (λa.cbva_seq(L2[s;a]; λg.<mk-hdf S[g;s], G2[g;s]> m2))))) init) 
  ~ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if n <z m1 then L1[a] n
                                         if n <z m1 + m2 then mk_lambdas(L2[s;a] (n - m1);m1)
                                         else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.⋃f∈G1[g1].⋃b∈G2[g2;s].f b;m2);m1)
                                         fi  λg.<mk-hdf S[partial_ap_gen(g;(m1 + m2) + 1;m1;m2);s]
                                                 , select_fun_last(g;m1 + m2)
                                                 > (m1 + m2) + 1))))) 
    init)
BY
{ (Auto
   THEN ProcTransRepUR ``hdf-compose2 so_apply bag-null lt_int`` 0
   THEN (RW LiftAllC 0 THEN Reduce 0)
   THEN Refine `sqequalSqle` []
   THEN OneFixpointLeast
   THEN RepeatFor 6 (MoveToConcl (-4))
   THEN NatInd (-1)
   THEN (UnivCD THENA Auto)
   THEN Try ((ThinVar `j' THEN UnrollLoopsOnce THEN Strictness THEN Auto))
   THEN (RWO "fun_exp_unroll" 0 THENA Auto)
   THEN AutoSplit) }
1
1. m1 : ℕ
2. m2 : ℕ
3. j : ℤ
4. j ≠ 0
5. 0 < j
6. ∀L1,L2,G1,G2,init,S:Top.
     (λmk-hdf,s0. let X,Y = s0 
                  in case X
                      of inl(y) =>
                      case Y
                       of inl(y1) =>
                       inl (λa.let X',fs = y a 
                               in let Y',bs = y1 a 
                                  in let out ⟵ ⋃f∈fs.⋃b∈bs.f b
                                     in <mk-hdf <X', Y'>, out>)
                       | inr(y1) =>
                       inr ⋅ 
                      | inr(y) =>
                      inr ⋅ ^j - 1 
      ⊥ 
      <fix((λmk-hdf.(inl (λa.cbva_seq(L1 a; λg.<mk-hdf, G1 g> m1)))))
      , fix((λmk-hdf,s. (inl (λa.cbva_seq(L2 s a; λg.<mk-hdf (S g s), G2 g s> m2))))) init
      > ≤ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if (n) < (m1)
                                                  then L1 a n
                                                  else if (n) < (m1 + m2)
                                                          then mk_lambdas(L2 s a (n - m1);m1)
                                                          else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.⋃f∈G1 g1.
                                                                                                     ⋃b∈G2 g2 s.
                                                                                                     f b;m2);m1);
                                            λg.<mk-hdf (S partial_ap_gen(g;(m1 + m2) + 1;m1;m2) s)
                                               , select_fun_last(g;m1 + m2)
                                               > (m1 + m2) + 1))))) 
          init)
7. L1 : Top@i
8. L2 : Top@i
9. G1 : Top@i
10. G2 : Top@i
11. init : Top@i
12. S : Top@i
⊢ inl (λa.let X',fs = cbva_seq(L1 a; λg.<fix((λmk-hdf.(inl (λa.cbva_seq(L1 a; λg.<mk-hdf, G1 g> m1))))), G1 g> m1) 
          in let Y',bs = cbva_seq(L2 init a; λg.<fix((λmk-hdf,s. (inl (λa.cbva_seq(L2 s a; λg.<mk-hdf (S g s), G2 g s>
                                                                                   m2))))) 
                                                 (S g init)
                                                , G2 g init
                                                > m2) 
             in let out ⟵ ⋃f∈fs.⋃b∈bs.f b
                in <λmk-hdf,s0. let X,Y = s0 
                                in case X
                                    of inl(y) =>
                                    case Y
                                     of inl(y1) =>
                                     inl (λa.let X',fs = y a 
                                             in let Y',bs = y1 a 
                                                in let out ⟵ ⋃f∈fs.⋃b∈bs.f b
                                                   in <mk-hdf <X', Y'>, out>)
                                     | inr(y1) =>
                                     inr ⋅ 
                                    | inr(y) =>
                                    inr ⋅ ^j - 1 
                    ⊥ 
                    <X', Y'>
                   , out
                   >) 
  ≤ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if (n) < (m1)
                                            then L1 a n
                                            else if (n) < (m1 + m2)
                                                    then mk_lambdas(L2 s a (n - m1);m1)
                                                    else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.⋃f∈G1 g1.⋃b∈G2 g2 s.
                                                                                                        f b;m2);m1);
                                      λg.<mk-hdf (S partial_ap_gen(g;(m1 + m2) + 1;m1;m2) s)
                                         , select_fun_last(g;m1 + m2)
                                         > (m1 + m2) + 1))))) 
    init
2
1. m1 : ℕ
2. m2 : ℕ
3. j : ℤ
4. j ≠ 0
5. 0 < j
6. ∀L1,L2,G1,G2,init,S:Top.
     (λmk-hdf,s. (inl (λa.cbva_seq(λn.if (n) < (m1)
                                         then L1 a n
                                         else if (n) < (m1 + m2)
                                                 then mk_lambdas(L2 s a (n - m1);m1)
                                                 else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.⋃f∈G1 g1.⋃b∈G2 g2 s.
                                                                                                     f b;m2);m1);
                                   λg.<mk-hdf (S partial_ap_gen(g;(m1 + m2) + 1;m1;m2) s), select_fun_last(g;m1 + m2)>
                                   (m1 + m2) + 1)))^j - 1 
      ⊥ 
      init ≤ fix((λmk-hdf,s0. let X,Y = s0 
                              in case X
                                  of inl(y) =>
                                  case Y
                                   of inl(y1) =>
                                   inl (λa.let X',fs = y a 
                                           in let Y',bs = y1 a 
                                              in let out ⟵ ⋃f∈fs.⋃b∈bs.f b
                                                 in <mk-hdf <X', Y'>, out>)
                                   | inr(y1) =>
                                   inr ⋅ 
                                  | inr(y) =>
                                  inr ⋅ )) 
             <fix((λmk-hdf.(inl (λa.cbva_seq(L1 a; λg.<mk-hdf, G1 g> m1)))))
             , fix((λmk-hdf,s. (inl (λa.cbva_seq(L2 s a; λg.<mk-hdf (S g s), G2 g s> m2))))) init
             >)
7. L1 : Top@i
8. L2 : Top@i
9. G1 : Top@i
10. G2 : Top@i
11. init : Top@i
12. S : Top@i
⊢ inl (λa.cbva_seq(λn.if (n) < (m1)
                         then L1 a n
                         else if (n) < (m1 + m2)
                                 then mk_lambdas(L2 init a (n - m1);m1)
                                 else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.⋃f∈G1 g1.⋃b∈G2 g2 init.f b;m2);m1);
                   λg.<λmk-hdf,s.
                                 (inl (λa.cbva_seq(λn.if (n) < (m1)
                                                         then L1 a n
                                                         else if (n) < (m1 + m2)
                                                                 then mk_lambdas(L2 s a (n - m1);m1)
                                                                 else mk_lambdas_fun(λg1.mk_lambdas_fun(λg2.⋃f∈G1 g1.
                                                                                                            ⋃b∈G2 g2 s.
                                                                                                            f b;m2);m1);
                                                   λg.<mk-hdf (S partial_ap_gen(g;(m1 + m2) + 1;m1;m2) s)
                                                      , select_fun_last(g;m1 + m2)
                                                      > (m1 + m2) + 1)))^j - 1 
                       ⊥ 
                       (S partial_ap_gen(g;(m1 + m2) + 1;m1;m2) init)
                      , select_fun_last(g;m1 + m2)
                      > (m1 + m2) + 1)) ≤ fix((λmk-hdf,s0. let X,Y = s0 
                                                            in case X
                                                                of inl(y) =>
                                                                case Y
                                                                 of inl(y1) =>
                                                                 inl (λa.let X',fs = y a 
                                                                         in let Y',bs = y1 a 
                                                                            in let out ⟵ ⋃f∈fs.⋃b∈bs.f b
                                                                               in <mk-hdf <X', Y'>, out>)
                                                                 | inr(y1) =>
                                                                 inr ⋅ 
                                                                | inr(y) =>
                                                                inr ⋅ )) 
                                           <fix((λmk-hdf.(inl (λa.cbva_seq(L1 a; λg.<mk-hdf, G1 g> m1)))))
                                           , fix((λmk-hdf,s. (inl (λa.cbva_seq(L2 s a; λg.<mk-hdf (S g s), G2 g s>
                                                                               m2))))) 
                                             init
                                           >
Latex:
Latex:
\mforall{}[L1,L2,G1,G2,init,S:Top].  \mforall{}[m1,m2:\mBbbN{}].
    (fix((\mlambda{}mk-hdf.(inl  (\mlambda{}a.cbva\_seq(L1[a];  \mlambda{}g.<mk-hdf,  G1[g]>  m1)))))
      o  (fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(L2[s;a];  \mlambda{}g.<mk-hdf  S[g;s],  G2[g;s]>  m2)))))  init) 
    \msim{}  fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(\mlambda{}n.if  n  <z  m1  then  L1[a]  n
                                                                                  if  n  <z  m1  +  m2  then  mk\_lambdas(L2[s;a]  (n  -  m1);m1)
                                                                                  else  mk\_lambdas\_fun(\mlambda{}g1.mk\_lambdas\_fun(\mlambda{}g2.\mcup{}f\mmember{}G1[g1].
                                                                                                                                                                        \mcup{}b\mmember{}G2[g2;s].
                                                                                                                                                                        f  b;m2);m1)
                                                                                  fi  ;  \mlambda{}g.<mk-hdf  S[partial\_ap\_gen(g;(m1  +  m2)  +  1;m1;m2);s]
                                                                                                  ,  select\_fun\_last(g;m1  +  m2)
                                                                                                  >  (m1  +  m2)  +  1))))) 
        init)
By
Latex:
(Auto
  THEN  ProcTransRepUR  ``hdf-compose2  so\_apply  bag-null  lt\_int``  0
  THEN  (RW  LiftAllC  0  THEN  Reduce  0)
  THEN  Refine  `sqequalSqle`  []
  THEN  OneFixpointLeast
  THEN  RepeatFor  6  (MoveToConcl  (-4))
  THEN  NatInd  (-1)
  THEN  (UnivCD  THENA  Auto)
  THEN  Try  ((ThinVar  `j'  THEN  UnrollLoopsOnce  THEN  Strictness  THEN  Auto))
  THEN  (RWO  "fun\_exp\_unroll"  0  THENA  Auto)
  THEN  AutoSplit)
Home
Index