Nuprl Lemma : hdf-compose2_wf
∀[A,B,C:Type]. ∀[X:hdataflow(A;B ⟶ bag(C))]. ∀[Y:hdataflow(A;B)].  X o Y ∈ hdataflow(A;C) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-compose2: X o Y
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
hdf-compose2: X o Y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
so_apply: x[s1;s2]
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[Y:hdataflow(A;B)].
    X  o  Y  \mmember{}  hdataflow(A;C)  supposing  valueall-type(C)
Date html generated:
2016_05_16-AM-10_39_29
Last ObjectModification:
2015_12_28-PM-07_44_13
Theory : halting!dataflow
Home
Index