Nuprl Lemma : hdf-compose2_wf

[A,B,C:Type]. ∀[X:hdataflow(A;B ⟶ bag(C))]. ∀[Y:hdataflow(A;B)].  Y ∈ hdataflow(A;C) supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-compose2: Y hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a hdf-compose2: Y so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] all: x:A. B[x] implies:  Q callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) so_apply: x[s1;s2]

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[Y:hdataflow(A;B)].
    X  o  Y  \mmember{}  hdataflow(A;C)  supposing  valueall-type(C)



Date html generated: 2016_05_16-AM-10_39_29
Last ObjectModification: 2015_12_28-PM-07_44_13

Theory : halting!dataflow


Home Index