Nuprl Lemma : hdf-halted-compose2-iterate
∀[A,B,C:Type]. ∀[inputs:A List]. ∀[X1:hdataflow(A;B ⟶ bag(C))]. ∀[X2:hdataflow(A;B)].
  hdf-halted(X1 o X2*(inputs)) = hdf-halted(X1*(inputs)) ∨bhdf-halted(X2*(inputs)) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-compose2: X o Y
, 
iterate-hdataflow: P*(inputs)
, 
hdf-halted: hdf-halted(P)
, 
hdataflow: hdataflow(A;B)
, 
list: T List
, 
bor: p ∨bq
, 
valueall-type: valueall-type(T)
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
true: True
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
squash: ↓T
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[inputs:A  List].  \mforall{}[X1:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[X2:hdataflow(A;B)].
    hdf-halted(X1  o  X2*(inputs))  =  hdf-halted(X1*(inputs))  \mvee{}\msubb{}hdf-halted(X2*(inputs)) 
    supposing  valueall-type(C)
Date html generated:
2016_05_16-AM-10_39_49
Last ObjectModification:
2016_01_17-AM-11_12_48
Theory : halting!dataflow
Home
Index