Nuprl Lemma : hdf-halted-compose2
∀[A,B,C:Type]. ∀[X1:hdataflow(A;B ⟶ bag(C))]. ∀[X2:hdataflow(A;B)].
  uiff(↑hdf-halted(X1 o X2);↑(hdf-halted(X1) ∨bhdf-halted(X2))) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-compose2: X o Y
, 
hdf-halted: hdf-halted(P)
, 
hdataflow: hdataflow(A;B)
, 
bor: p ∨bq
, 
valueall-type: valueall-type(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
hdf-compose2: X o Y
, 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0)
, 
hdf-halted: hdf-halted(P)
, 
or: P ∨ Q
, 
hdf-run: hdf-run(P)
, 
isr: isr(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
false: False
, 
sq_type: SQType(T)
, 
guard: {T}
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bor: p ∨bq
, 
true: True
, 
exists: ∃x:A. B[x]
, 
bnot: ¬bb
, 
top: Top
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X1:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[X2:hdataflow(A;B)].
    uiff(\muparrow{}hdf-halted(X1  o  X2);\muparrow{}(hdf-halted(X1)  \mvee{}\msubb{}hdf-halted(X2)))  supposing  valueall-type(C)
Date html generated:
2016_05_16-AM-10_39_46
Last ObjectModification:
2015_12_28-PM-07_44_38
Theory : halting!dataflow
Home
Index