Nuprl Lemma : hdf-halted-compose2

[A,B,C:Type]. ∀[X1:hdataflow(A;B ⟶ bag(C))]. ∀[X2:hdataflow(A;B)].
  uiff(↑hdf-halted(X1 X2);↑(hdf-halted(X1) ∨bhdf-halted(X2))) supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-compose2: Y hdf-halted: hdf-halted(P) hdataflow: hdataflow(A;B) bor: p ∨bq valueall-type: valueall-type(T) assert: b uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] rev_uimplies: rev_uimplies(P;Q) implies:  Q prop: hdf-compose2: Y mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) hdf-halted: hdf-halted(P) or: P ∨ Q hdf-run: hdf-run(P) isr: isr(x) assert: b ifthenelse: if then else fi  bfalse: ff false: False sq_type: SQType(T) guard: {T} btrue: tt iff: ⇐⇒ Q not: ¬A rev_implies:  Q bool: 𝔹 unit: Unit it: bor: p ∨bq true: True exists: x:A. B[x] bnot: ¬bb top: Top

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[X1:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[X2:hdataflow(A;B)].
    uiff(\muparrow{}hdf-halted(X1  o  X2);\muparrow{}(hdf-halted(X1)  \mvee{}\msubb{}hdf-halted(X2)))  supposing  valueall-type(C)



Date html generated: 2016_05_16-AM-10_39_46
Last ObjectModification: 2015_12_28-PM-07_44_38

Theory : halting!dataflow


Home Index