Nuprl Lemma : hdf-halted-is-halt
∀[A,B:Type]. ∀[X:hdataflow(A;B)].  X ~ hdf-halt() supposing ↑hdf-halted(X)
Proof
Definitions occuring in Statement : 
hdf-halt: hdf-halt()
, 
hdf-halted: hdf-halted(P)
, 
hdataflow: hdataflow(A;B)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
hdf-halt: hdf-halt()
, 
prop: ℙ
Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    X  \msim{}  hdf-halt()  supposing  \muparrow{}hdf-halted(X)
Date html generated:
2016_05_16-AM-10_37_52
Last ObjectModification:
2015_12_28-PM-07_45_20
Theory : halting!dataflow
Home
Index