Nuprl Lemma : hdf-halted-is-halt

[A,B:Type]. ∀[X:hdataflow(A;B)].  hdf-halt() supposing ↑hdf-halted(X)


Proof




Definitions occuring in Statement :  hdf-halt: hdf-halt() hdf-halted: hdf-halted(P) hdataflow: hdataflow(A;B) assert: b uimplies: supposing a uall: [x:A]. B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a hdf-halt: hdf-halt() prop:

Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    X  \msim{}  hdf-halt()  supposing  \muparrow{}hdf-halted(X)



Date html generated: 2016_05_16-AM-10_37_52
Last ObjectModification: 2015_12_28-PM-07_45_20

Theory : halting!dataflow


Home Index