Nuprl Lemma : hdf-halted-is-inr

[A,B:Type]. ∀[X:hdataflow(A;B)].  inr ⋅  supposing ↑hdf-halted(X)


Proof




Definitions occuring in Statement :  hdf-halted: hdf-halted(P) hdataflow: hdataflow(A;B) assert: b it: uimplies: supposing a uall: [x:A]. B[x] inr: inr  universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B ext-eq: A ≡ B and: P ∧ Q all: x:A. B[x] implies:  Q hdf-halted: hdf-halted(P) isr: isr(x) assert: b ifthenelse: if then else fi  bfalse: ff false: False prop: btrue: tt sq_type: SQType(T) guard: {T}

Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    X  \msim{}  inr  \mcdot{}    supposing  \muparrow{}hdf-halted(X)



Date html generated: 2016_05_16-AM-10_37_47
Last ObjectModification: 2015_12_28-PM-07_45_21

Theory : halting!dataflow


Home Index