Nuprl Lemma : hdf-parallel-bag_wf

[A,B:Type]. ∀[Xs:bag(hdataflow(A;B))].  hdf-parallel-bag(Xs) ∈ hdataflow(A;B) supposing valueall-type(B)


Proof




Definitions occuring in Statement :  hdf-parallel-bag: hdf-parallel-bag(Xs) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a hdf-parallel-bag: hdf-parallel-bag(Xs) so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] has-value: (a)↓ callbyvalueall: callbyvalueall has-valueall: has-valueall(a) pi1: fst(t) pi2: snd(t) so_apply: x[s1;s2]

Latex:
\mforall{}[A,B:Type].  \mforall{}[Xs:bag(hdataflow(A;B))].
    hdf-parallel-bag(Xs)  \mmember{}  hdataflow(A;B)  supposing  valueall-type(B)



Date html generated: 2016_05_16-AM-10_41_55
Last ObjectModification: 2015_12_28-PM-07_43_41

Theory : halting!dataflow


Home Index