Nuprl Lemma : hdf-parallel-bag_wf
∀[A,B:Type]. ∀[Xs:bag(hdataflow(A;B))].  hdf-parallel-bag(Xs) ∈ hdataflow(A;B) supposing valueall-type(B)
Proof
Definitions occuring in Statement : 
hdf-parallel-bag: hdf-parallel-bag(Xs)
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
hdf-parallel-bag: hdf-parallel-bag(Xs)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
has-value: (a)↓
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
so_apply: x[s1;s2]
Latex:
\mforall{}[A,B:Type].  \mforall{}[Xs:bag(hdataflow(A;B))].
    hdf-parallel-bag(Xs)  \mmember{}  hdataflow(A;B)  supposing  valueall-type(B)
Date html generated:
2016_05_16-AM-10_41_55
Last ObjectModification:
2015_12_28-PM-07_43_41
Theory : halting!dataflow
Home
Index