Nuprl Lemma : hdf-parallel-halt-right

[A,B:Type]. ∀[X:hdataflow(A;B)].  || hdf-halt() X ∈ hdataflow(A;B) supposing valueall-type(B)


Proof




Definitions occuring in Statement :  hdf-parallel: || Y hdf-halt: hdf-halt() hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q all: x:A. B[x] top: Top hdf-parallel: || Y mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0) hdf-ap: X(a) hdf-halt: hdf-halt() exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  cand: c∧ B bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtype_rel: A ⊆B ext-eq: A ≡ B callbyvalueall: callbyvalueall has-value: (a)↓ has-valueall: has-valueall(a) pi2: snd(t) evalall: evalall(t) bag-append: as bs append: as bs list_ind: list_ind empty-bag: {} nil: [] not: ¬A true: True pi1: fst(t)

Latex:
\mforall{}[A,B:Type].  \mforall{}[X:hdataflow(A;B)].    X  ||  hdf-halt()  =  X  supposing  valueall-type(B)



Date html generated: 2016_05_16-AM-10_41_40
Last ObjectModification: 2015_12_28-PM-07_45_59

Theory : halting!dataflow


Home Index