Nuprl Lemma : hdf-parallel-transformation2
∀[L,G,H,S,init,out:Base]. ∀[m:ℕ].
  (inl (λa.<inr Ax , out>) || fix((λmk-hdf,s. (inl (λa.cbva_seq(L[s;a]; λg.<case H[g;s]
                                                                             of inl() =>
                                                                             mk-hdf S[g;s]
                                                                             | inr() =>
                                                                             inr Ax 
                                                                           , G[g]
                                                                           > m))))) 
                              init ~ fix((λmk-hdf,s. (inl (λa.cbva_seq(λn.if (n =z m)
                                                                          then case fst(s)
                                                                                of inl(x) =>
                                                                                mk_lambdas_fun(λg.(out + G[g]);m)
                                                                                | inr(x) =>
                                                                                mk_lambdas_fun(λg.G[g];m)
                                                                          else L[snd(s);a] n
                                                                          fi  λg.<case H[partial_ap(g;m + 1;m);snd(s)]
                                                                                    of inl() =>
                                                                                    mk-hdf 
                                                                                    <inr Ax 
                                                                                    , S[partial_ap(g;m + 1;m);snd(s)]
                                                                                    >
                                                                                    | inr() =>
                                                                                    inr Ax 
                                                                                  , select_fun_last(g;m)
                                                                                  > m + 1))))) 
                                     <inl Ax, init>)
Proof
Definitions occuring in Statement : 
hdf-parallel: X || Y
, 
nat: ℕ
, 
ifthenelse: if b then t else f fi 
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
apply: f a
, 
fix: fix(F)
, 
lambda: λx.A[x]
, 
pair: <a, b>
, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
inr: inr x 
, 
inl: inl x
, 
add: n + m
, 
natural_number: $n
, 
base: Base
, 
sqequal: s ~ t
, 
axiom: Ax
, 
bag-append: as + bs
, 
select_fun_last: select_fun_last(g;m)
, 
partial_ap: partial_ap(g;n;m)
, 
mk_lambdas_fun: mk_lambdas_fun(F;m)
, 
cbva_seq: cbva_seq(L; F; m)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
eq_int: (i =z j)
, 
ifthenelse: if b then t else f fi 
, 
hdf-parallel: X || Y
, 
bfalse: ff
, 
btrue: tt
, 
hdf-halted: hdf-halted(P)
, 
band: p ∧b q
, 
hdf-ap: X(a)
, 
mk-hdf: mk-hdf(s,m.G[s; m];st.H[st];s0)
, 
hdf-run: hdf-run(P)
, 
hdf-halt: hdf-halt()
, 
isr: isr(x)
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
empty-bag: {}
, 
nil: []
, 
it: ⋅
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
select_fun_last: select_fun_last(g;m)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
Latex:
\mforall{}[L,G,H,S,init,out:Base].  \mforall{}[m:\mBbbN{}].
    (inl  (\mlambda{}a.<inr  Ax  ,  out>)  ||  fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(L[s;a];  \mlambda{}g.<case  H[g;s]
                                                                                                                                                          of  inl()  =>
                                                                                                                                                          mk-hdf  S[g;s]
                                                                                                                                                          |  inr()  =>
                                                                                                                                                          inr  Ax 
                                                                                                                                                      ,  G[g]
                                                                                                                                                      >  m))))) 
                                                            init 
    \msim{}  fix((\mlambda{}mk-hdf,s.  (inl  (\mlambda{}a.cbva\_seq(\mlambda{}n.if  (n  =\msubz{}  m)
                                                                                  then  case  fst(s)
                                                                                              of  inl(x)  =>
                                                                                              mk\_lambdas\_fun(\mlambda{}g.(out  +  G[g]);m)
                                                                                              |  inr(x)  =>
                                                                                              mk\_lambdas\_fun(\mlambda{}g.G[g];m)
                                                                                  else  L[snd(s);a]  n
                                                                                  fi  ;  \mlambda{}g.<case  H[partial\_ap(g;m  +  1;m);snd(s)]
                                                                                                      of  inl()  =>
                                                                                                      mk-hdf  <inr  Ax  ,  S[partial\_ap(g;m  +  1;m);snd(s)]>
                                                                                                      |  inr()  =>
                                                                                                      inr  Ax 
                                                                                                  ,  select\_fun\_last(g;m)
                                                                                                  >  m  +  1))))) 
        <inl  Ax,  init>)
Date html generated:
2016_05_16-AM-10_47_01
Last ObjectModification:
2016_01_17-AM-11_11_10
Theory : halting!dataflow
Home
Index