Nuprl Lemma : hdf-run_wf

[A,B:Type]. ∀[P:A ⟶ (hdataflow(A;B) × bag(B))].  (hdf-run(P) ∈ hdataflow(A;B))


Proof




Definitions occuring in Statement :  hdf-run: hdf-run(P) hdataflow: hdataflow(A;B) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T hdf-run: hdf-run(P) subtype_rel: A ⊆B guard: {T} uimplies: supposing a

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  (hdataflow(A;B)  \mtimes{}  bag(B))].    (hdf-run(P)  \mmember{}  hdataflow(A;B))



Date html generated: 2016_05_16-AM-10_37_57
Last ObjectModification: 2015_12_28-PM-07_45_36

Theory : halting!dataflow


Home Index